dc.creatorSolha D.C.
dc.creatorBarbosa T.M.
dc.creatorViesser R.V.
dc.creatorRittner R.
dc.creatorTormena C.F.
dc.date2014
dc.date2015-06-25T17:51:10Z
dc.date2015-11-26T15:40:41Z
dc.date2015-06-25T17:51:10Z
dc.date2015-11-26T15:40:41Z
dc.date.accessioned2018-03-28T22:49:09Z
dc.date.available2018-03-28T22:49:09Z
dc.identifier
dc.identifierJournal Of Physical Chemistry A. American Chemical Society, v. 118, n. 15, p. 2794 - 2800, 2014.
dc.identifier10895639
dc.identifier10.1021/jp500211y
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898988872&partnerID=40&md5=6a3d539aa9ab28d00f229223e7e2d442
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86000
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86000
dc.identifier2-s2.0-84898988872
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264429
dc.descriptionThe conformational preferences of 3-hydroxytetrahydropyran (1) were evaluated using infrared and nuclear magnetic resonance spectroscopic data in solvents of different polarities. Theoretical calculations in the isolated phase and including the solvent effect were performed, showing that the most stable conformations for compound 1 are those containing the substituent in the axial and equatorial orientations. The axial conformation is more stable in the isolated phase and in a nonpolar solvent, while the equatorial conformation is more stable than the axial in polar media. The occurrence of intramolecular hydrogen-bonded O-H⋯O in the axial conformer was detected from infrared spectra in a nonpolar solvent at different concentrations. Our attempt to evaluate this interaction using population natural bond orbital and topological quantum theory of atoms in molecules analyses failed, but topological noncovalent interaction analysis was capable of characterizing it. © 2014 American Chemical Society.
dc.description118
dc.description15
dc.description2794
dc.description2800
dc.descriptionEliel, E.L., Samuel, H.W., Doyle, M.P., (2001) Basic Organic Stereochemistry, , Wiley-Interscience: New York
dc.descriptionCortéz-Guzman, F., Hernández-Trujillo, J., Cuevas, G., The Nonexistence of Repulsive 1,3-diaxial Interactions in Monosubstituted Cyclohexanes (2003) J. Phys. Chem. A, 107, pp. 9253-9256
dc.descriptionRibeiro, D.S., Rittner, R., The Role of Hyperconjugation in the Conformational Analysis of Methylcyclohexane and Methylheterocyclohexanes (2003) J. Org. Chem., 68, pp. 6780-6787
dc.descriptionTaddei, F., Kleinpeter, E., The Anomeric Effect in Substituted Cyclohexanes. I. The Role of Hyperconjugative Interactions and Steric Effect in Monosubstituted Cyclohexanes (2004) J. Mol. Struct.: THEOCHEM, 683, pp. 29-41
dc.descriptionFreitas, M.P., Tormena, C.F., Rittner, R., Interaction in trans-2-Halocyclohexanols-an Infraredand Theoretical Study (2001) J. Mol. Struct., 570, pp. 175-180
dc.descriptionFreitas, M.P., Tormena, C.F., Oliveira, P.R., Rittner, R., Halogenated Six-Membered Rings: A Theoretical Approach for Substituent Effects in Conformational Analysis (2002) J. Mol. Struct.: THEOCHEM, 589-590, pp. 147-151
dc.descriptionFreitas, M.P., Tormena, C.F., Luizar, C., Ferreira, M.M.C., Rittner, R., Substituent Interactions in trans -2-Substituted Methoxycyclohexanes: An Explanation to the Conformational Behaviour in a Chemometric and Theoretical View (2002) J. Mol. Struct. THEOCHEM, 618, pp. 219-224
dc.descriptionFreitas, M.P., Tormena, C.F., Rittner, R., Abraham, R.J., Conformational Analysis of trans -2-Halocyclohexanols and their Methyl Ethers: A 1H NMR, Theoretical and Solvation Approach (2003) J. Phys. Org. Chem., 16, pp. 27-33
dc.descriptionFreitas, M.P., Tormena, C.F., Rittner, R., Abraham, R.J., Conformational Properties of trans -2-Halo-acetoxycyclohexanes: 1H NMR, Solvation and Theoretical Investigation (2005) J. Mol. Struct., 734, pp. 211-217
dc.descriptionFreitas, M.P., Rittner, R., Tormena, C.F., Abraham, R.J., Conformational Analysis and Stereoelectronic Effects in trans -1,2-Dihalocyclohexanes: 1H NMR and Theoretical Investigation (2005) Spectrochim. Acta, Part A, 61, pp. 1771-1776
dc.descriptionBocca, C.C., Basso, E.A., Fiorin, B.C., Tormena, C.F., Dos Santos, F.P., Conformational Behavior of cis -2-Methoxy, cis -2-Methylthio, and cis -2-Methylselenocyclohexanol: A Theoretical and Experimental Investigation (2006) J. Phys. Chem. A, 110, pp. 9438-9442
dc.descriptionCedran, J.C., Dos Santos, F.P., Basso, E.A., Tormena, C.F., Conformational Preferences of 2-Methoxy, 2-Methylthio, and 2-Methylselenocyclohexyl- N, N -dimethylcarbamate: A Theoretical and Experimental Investigation (2007) J. Phys. Chem. A, 111, pp. 11701-11705
dc.descriptionBasso, E.A., Abiko, L.A., Gauze, G.F., Pontes, R.M., Conformational Analysis of cis -2-Halocyclohexanols
dc.descriptionSolvent Effects by NMR and Theoretical Calculations (2011) J. Org. Chem., 76, pp. 145-153
dc.descriptionSilla, J.M., Cormanich, R.A., Duarte, C.J., Freitas, M.P., Ramalho, T.C., Barbosa, T.M., Santos, F.P., Rittner, R., Alkyl Group Effect on the Conformational Isomerism of trans -2-Bromoalkoxycyclohexanes Analyzed by NMR Spectroscopy and Theoretical Calculation (2011) J. Phys. Chem. A, 115, pp. 10122-10127
dc.descriptionBasso, E.A., Kaiser, C., Rittner, R., Lambert, J.B., Axial Equatorial Proportions for 2-Substituted Cyclohexanones (1993) J. Org. Chem., 58, pp. 7865-7869
dc.descriptionFreitas, M.P., Rittner, R., Tormena, C.F., Abraham, R.J., Conformational Analysis of 2-Bromocyclohexanone. A Combined NMR, IR, Solvation and Theoretical Approach (2001) J. Phys. Org. Chem., 14, pp. 317-322
dc.descriptionYoshinaga, F., Tormena, C.F., Freitas, M.P., Rittner, R., Abraham, R.J., Conformational Analysis of 2-Halocyclohexanones: An NMR, Theoretical and Solvation Study (2002) J. Chem. Soc., Perkin Trans.2, pp. 1494-1498
dc.descriptionFreitas, M.P., Tormena, C.F., Garcia, J.C., Rittner, R., Abraham, R.J., Basso, E.A., Santos, F.P., Cedran, J.C., NMR, Solvation and Theoretical Investigations of Conformational Isomerism in 2-X-cyclohexanones (X=NMe2, OMe, SMe and SeMe) (2003) J. Phys. Org. Chem., 16, pp. 833-838
dc.descriptionCoelho, J.V., Freitas, M.P., Tormena, C.F., Rittner, R., On the4 JHH Long-range Coupling in 2-Bromocyclohexanone: Conformational Insights (2009) Magn. Reson. Chem., 47, pp. 348-351
dc.descriptionCoelho, J.V., Freitas, M.P., Ramalho, T.C., Martins, C.R., Bitencourt, M., Carmanich, R.A., Tormena, C.F., Rittner, R., The Case of Infrared Carbonyl Stretching Intensities of 2-Bromocyclohexanone: Conformational and Intermolecular Interaction Insights (2010) Chem. Phys. Lett., 494, pp. 26-30
dc.descriptionAnizelli, P.R., Vilcachagua, J.D., Cunha Neto, A., Tormena, C.F., Stereoelectronic Interaction and Their Effects on Conformational Preference for 2-Substituted Methylenecyclohexane: An Experimental and Theoretical Investigation (2008) J. Phys. Chem. A, 112, pp. 8785-8789
dc.descriptionAlabugin, I.V., Gilmore, K.M., Peterson, P.W., Hyperconjugation (2011) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 1, pp. 109-141
dc.descriptionHa, S., Gao, J., Tidor, B., Brady, J.W., Karplus, M., Solvent Effect on the Anomeric Equilibrium in D-glucose: A Free Energy Simulation Analysis (1991) J. Am. Chem. Soc., 113, pp. 1553-1557
dc.descriptionCramer, C.J., Anomeric and Reverse Anomeric Effects in the Gas Phase and Aqueous Solution (1992) J. Org. Chem., 57, pp. 7034-7043
dc.descriptionMo, Y., Computational Evidence that Hyperconjugative Interactions are not Responsible for the Anomeric Effect (2010) Nat. Chem., 2, pp. 666-671
dc.descriptionHuang, Y., Zhong, A.-G., Yang, Q., Liu, S., Origin of Anomeric Effect: A Density Functional of Steric Analysis (2011) J. Chem. Phys., 134, pp. 84103-84109
dc.descriptionBauerfeldt, G.F., Cardozo, T.M., Pereira, M.S., Da Silva, C.O., The Anomeric Effect: The Dominance of Exchange Effects in Closed-Shell Systems (2013) Org. Biomol. Chem., 11, pp. 299-308
dc.descriptionCocinero, E.J., Çarçabal, P., Vaden, T.D., Simons, J.P., Davis, B.G., Sensing the Anomeric Effect in a Solvent-Free Environment (2011) Nature, 469, pp. 76-80
dc.descriptionFreitas, M.P., Simultaneous Gauche and Anomeric Effects in α-Substituted Sulfoxides (2012) J. Org. Chem., 77, pp. 7607-7611
dc.descriptionFreitas, M.P., The Anomeric Effect on the Basis of Natural Bond Orbital Analysis (2013) Org. Biomol. Chem., 11, pp. 2885-2890
dc.descriptionSugai, T., Lkeda, H., Ohta, H., Biocatalytic Approaches to Both Enantiomers of (2R*,3S*)-2- Allyloxy-3,4,5,6-tetrahydro-2H-pyran-3-ol (1996) Tetrahedron, 52, pp. 8123-8134
dc.descriptionKosjek, B., Nti-Gyabaah, J., Telari, K., Dunne, L., Moore, J.C., Preparative Asymmetric Synthesis of 4,4-Dimethoxytetrahydro-2 H -pyran-3-ol with a Ketone Reductase and in Situ Cofactor Recycling using Glucose Dehydrogenase (2008) Org. Process Res. Dev., 12, pp. 584-588
dc.descriptionSugawara, K., Imanishi, Y., Hashiyama, T., Efficient and Practical Synthesis of both Enantiomers of 6-Silyloxy-3-pyranone Derivatives (2000) Tetrahedron: Asymmetry, 11, pp. 4529-4535
dc.descriptionChan, W.N., Evans, J.M., Hadley, M.S., Morgan, H.K.A., Stean, T.O., Thompson, M., Upton, N., Vong, A.K., Synthesis of Novel trans -4-(Substitutedbenzamido)-3,4-dihydro-2 H -benzo[ b ]-pyran-3-ol Derivatives as Potential Anticonvulsant Agents with a Distinctive Binding Profile (1996) J. Med. Chem., 39, pp. 4537-4539
dc.descriptionSasaerila, Y., Gries, R., Gries, G., Khaskin, G., King, S., Takács, S., Hardi, Sex Pheromone Components of Male Tirathabamundella (Lepidoptera: Pyralidae) (2003) Chemoecology, 13, pp. 89-93
dc.descriptionBarker, S.A., Brimacombe, J.S., Foster, A.B., Whiffen, D.H., Zweifel, G., Intramolecular Hydrogen Bonding in some Monohydroxy Derivatives of Tetrahydrofuran, Tetrahydropyran and 1,3-dioxan (1959) Tetrahedron, 7, pp. 10-18
dc.descriptionMøller, C., Plesset, M.S., Note on an approximation treatment for many-electron systems (1934) Phys. Rev., 46, pp. 618-622
dc.descriptionHead-Gordon, M., Pople, J.A., Frisch, M.J., MP2 energy evaluation by direct methods (1988) Chem. Phys. Lett., 153, pp. 503-506
dc.descriptionPurvis III, G.D., Bartlett, R.J., A full coupled-cluster singles and doubles model: The inclusion of disconnected triples (1982) J. Chem. Phys., 76, pp. 1910-1918
dc.descriptionWeinhold, F., Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives (2012) J. Comput. Chem., 33, pp. 2363-2379
dc.descriptionBader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Clarendon: Oxford, U.K
dc.descriptionJohnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W., Revealing Noncovalent Interactions (2010) J. Am. Chem. Soc., 132, pp. 6498-6506
dc.descriptionFrisch, M.J., (2009) Gaussian 09, , revision D.01
dc.descriptionGaussian, Inc. Wallingford, CT
dc.descriptionGeertsen, J., Oddershede, J., 2nd-Order Polarization Propagator Calculations of Indirect Nuclear Spin-Spin Coupling Tensors in the Water Molecule (1984) Chem. Phys., 90, pp. 301-311
dc.descriptionEnevoldsen, T., Oddershede, J., Sauer, S.P.A., Correlated Calculations of Indirect Nuclear Spin-Spin Coupling Constants using Second-Order Polarization Propagator Approximations: SOPPA and SOPPA(CCSD) (1998) Theor. Chem. Acc., 100, pp. 275-284
dc.descriptionSauer, S.P.A., Second-Order Polarization Propagator Approximation with Coupled-Cluster Singles and Doubles Amplitudes-SOPPA(CCSD): The Polarizability and Pyperpolarizability of Li- (1997) J. Phys. B: At., Mol. Opt. Phys., 30, pp. 3773-3780
dc.description(2011), http://daltonprogram.org, Dalton2011, A Molecular Electronic Structure ProgramBarone, V., (1996) Recent Advances in Density Functional Methods, Part i, , Chong, D. P. World Scientific Publ. Co. Singapore
dc.descriptionGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison: Madison, WI, Program implemented in the Gaussian 09 package
dc.descriptionKeith, T.A., (2011) AIMALL, , aim.tkgristmill.comh, version 11.10.16
dc.descriptionTK Gristmill Software: Overland Park, KS
dc.descriptionContreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W., NCIPLOT: A Program for Plotting Noncovalent Interaction Regions (2011) J. Chem. Theory Comput., 7, pp. 625-632
dc.descriptionZweifel, G., Plamondon, J., Hydroboration of Dihydropyrans and Dihydrofurans (1970) J. Org. Chem., 35, pp. 898-902
dc.descriptionMarenich, A.V., Cramer, C.J., Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions (2009) J. Phys. Chem. B, 113, pp. 6378-6396
dc.descriptionAbraham, R.J., Jones, A.D., Warne, M.A., Rittner, R., Tormena, C.F., Conformational Analysis. Part 27. NMR, Solvation and Theoretical Investigation of Conformational Isomerism in Fluoro- and l,l-difluoro-acetone (1996) J. Chem. Soc., Perkin Trans 2, pp. 533-539
dc.descriptionHelgaker, T., Jaszuński, M., Pecul, M., The Quantum-Chemical Calculation of NMR Indirect Spin-Spin Coupling Constants (2008) Prog. Nucl. Magn. Reson. Spectrosc., 53, pp. 249-268
dc.descriptionConley, R.T., (1972) Infrared Spectroscopy, pp. 129-131. , 2 nd ed. Allyn and Bacon: Boston
dc.descriptionLane, J.R., Contreras-García, J., Piquemal, J.-P., Miller, B.J., Kjaergaard, H.G., Are Bond Critical Points Really Critical for Hydrogen Bonding? (2013) J. Chem. Theory Comput., 9, pp. 3263-3266
dc.descriptionGrabowski, S.J., What Is the Covalency of Hydrogen Bonding? (2011) Chem. Rev., 111, pp. 2597-2625
dc.languageen
dc.publisherAmerican Chemical Society
dc.relationJournal of Physical Chemistry A
dc.rightsfechado
dc.sourceScopus
dc.titleExperimental And Theoretical Studies Of Intramolecular Hydrogen Bonding In 3-hydroxytetrahydropyran: Beyond Aim Analysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución