dc.creatorBertolim M.A.
dc.creatorMello M.P.
dc.creatorDe Rezende K.A.
dc.date2005
dc.date2015-06-26T14:06:02Z
dc.date2015-11-26T15:40:15Z
dc.date2015-06-26T14:06:02Z
dc.date2015-11-26T15:40:15Z
dc.date.accessioned2018-03-28T22:48:45Z
dc.date.available2018-03-28T22:48:45Z
dc.identifier
dc.identifierTransactions Of The American Mathematical Society. , v. 357, n. 10, p. 4091 - 4129, 2005.
dc.identifier29947
dc.identifier10.1090/S0002-9947-04-03641-4
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-26444450678&partnerID=40&md5=be4046a78f939bdd74c652402f95babc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93052
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93052
dc.identifier2-s2.0-26444450678
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264334
dc.descriptionIn this article the main theorem establishes the necessity and sufficiency of the Poincaré-Hopf inequalities in order for the Morse inequalities to hold. The convex hull of the collection of all Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data determines a Morse polytope defined on the nonnegative orthant. Using results from network flow theory, a scheme is provided for constructing all possible Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data. Geometrical properties of this polytope are described. ©2004 American Mathematical Society.
dc.description357
dc.description10
dc.description4091
dc.description4129
dc.descriptionBertolim, M.A., Mello, M.P., De Rezende, K.A., Lyapunov graph continuation (2003) Ergod. Th. & Dynam. Sys., 23, pp. 1-58. , MR2004b:37042
dc.descriptionBertolim, M.A., Mello, M.P., De Rezende, K.A., Poincaré-Hopf and Morse inequalities for Lyapunov graphs Ergod. Th. & Dynam. Sys., , To appear in
dc.descriptionConley, C., Isolated invariant sets and the Morse index (1978) CBMS Regional Conference Series in Mathematics, 38. , American Mathematical Society, Providence, RI, MR80c:58009
dc.descriptionCruz, R.N., De Rezende, K.A., Gradient-like flows on high-dimensional manifolds (1999) Ergod. Th. & Dynam. Sys., 19 (2), pp. 339-362. , MR2001a:37026
dc.descriptionFulkerson, D.R., Gross, O.A., Incidence matrices and interval graphs (1965) Pacific Journal of Mathematics, 15, pp. 835-855. , MR32:3881
dc.descriptionHoffman, A.J., Kruskal, J.B., Integral boundary points of convex polyhedra (1956) Annals of Mathematics Studies, (38), pp. 223-246. , Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Princeton University Press, Princeton, NJ. MR18:980b
dc.descriptionMorse, M., Relations between the critical points of a real functions of n independent variables (1925) Trans. Am. Math. Soc., 27, pp. 345-396
dc.languageen
dc.publisher
dc.relationTransactions of the American Mathematical Society
dc.rightsfechado
dc.sourceScopus
dc.titlePoincaré-hopf Inequalities
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución