dc.creatorPaiva J.G.S.
dc.creatorSchwartz W.R.
dc.creatorPedrini H.
dc.creatorMinghim R.
dc.date2014
dc.date2015-06-25T17:51:05Z
dc.date2015-11-26T15:40:08Z
dc.date2015-06-25T17:51:05Z
dc.date2015-11-26T15:40:08Z
dc.date.accessioned2018-03-28T22:48:38Z
dc.date.available2018-03-28T22:48:38Z
dc.identifier
dc.identifierIeee Transactions On Visualization And Computer Graphics. Ieee Computer Society, v. 21, n. 1, p. 4 - 17, 2014.
dc.identifier10772626
dc.identifier10.1109/TVCG.2014.2331979
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84915819887&partnerID=40&md5=aeedddb13e3421e19b3b4f768d0306df
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85980
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85980
dc.identifier2-s2.0-84915819887
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264307
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionAutomatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.
dc.description21
dc.description1
dc.description4
dc.description17
dc.descriptionFAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionAgarwal, M., Goyal, M., Deo, M.C., Locally weighted projection regression for predicting hydraulic parameters (2010) Civil Eng. Environ. Syst, 27 (1), pp. 71-80
dc.descriptionBachmaier, C., Brandes, U., Schlieper, B., Drawing phylogenetic trees (2005) Proc. 16th Int. Conf. Algorithms Comput, 3827, pp. 1110-1121
dc.descriptionChoo, J., Lee, C., Reddy, C.K., Park, H., Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization (2013) IEEE Trans. Vis. Comput. Graph, 19 (12), pp. 1992-2001. , Dec
dc.descriptionChoo, J., Lee, H., Kihm, J., Park, H., IVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction (2010) Proc. IEEE Symp. Vis. Analy. Sci. Technol, pp. 27-34
dc.descriptionCiocca, G., Cusano, C., Schettini, R., Semantic classification, low level features and relevance feedback for content-based image retrieval (2009) Proc. IS&T/SPIE Electron. Imaging, 7255, p. 72550D
dc.descriptionCox, T.F., Cox, M.A.A., (2000) Multidimensional Scaling, , 2nd ed. London, U.K.: Chapman & Hall
dc.descriptionCuadros, A.M., Paulovich, F.V., Minghim, R., Telles, G.P., Point placement by phylogenetic trees and its application for visual analysis of document collections (2007) Proc. IEEE Symp. Vis. Anal. Sci. Technol, pp. 99-106. , Sacramento, CA, USA
dc.descriptionDo, T.-N., Towards simple, easy to understand, an interactive decision tree algorithm (2007) College Inf. Technol, , Can tho Univ., Can Tho, Vietnam, Tech. Rep. 06-01
dc.descriptionD'Souza, A., Vijayakumar, S., Schaal, S., Learning inverse kinematics (2001) Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, 1, pp. 298-303. , Maui, HI, USA
dc.descriptionEades, P.A., A heuristic for graph drawing (1984) Congressus Numerantium, 42, pp. 149-160
dc.descriptionEss, A., Leibe, B., Schindler, K., Van Gool, L., A mobile vision system for robust multi-person tracking (2008) Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit, pp. 1-8. , Anchorage, AK, USA
dc.descriptionFei-Fei, L., Fergus, R., Perona, P., Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories (2007) Comput. Vis. Image Understanding, 106 (1), pp. 59-70
dc.descriptionFlorez, J., Bellot, D., Morel, G., LWPR-model based predictive force control for serial comanipulation in beating heart surgery (2011) Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 320-326. , Budapest, Hungary
dc.descriptionFoody, G.M., Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm (2006) Remote Sens. Environ, 103 (2), pp. 179-189
dc.descriptionHeimerl, F., Koch, S., Bosch, H., Ertl, T., Visual classifier training for text document retrieval (2012) IEEE Trans. Vis. Comput. Graph, 18 (12), pp. 2839-2848. , Dec
dc.descriptionHoferlin, B., Netzel, R., Hoferlin, M., Weiskopf, D., Heidemann, G., Inter-active learning of ad-hoc classifiers for video visual analytics (2012) Proc. IEEE Conf. Vis. Anal. Sci. Technol, pp. 23-32
dc.descriptionHoi, S.C., Jin, R., Zhu, J., Lyu, M.R., Semi-supervised svm batch mode active learning for image retrieval (2008) Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 1-7
dc.descriptionHossain, M.S., Ojili, P.K.R., Grimm, C., Muller, R., Watson, L.T., Ramakrishnan, N., Scatter/gather clustering: Flexibly incorporating user feedback to steer clustering results (2012) IEEE Trans. Vis. Comput. Graph, 18 (12), pp. 2829-2838. , Dec
dc.descriptionJolliffe, I., (2002) Principal Component Analysis, , 2nd ed. New York NY USA: Springer
dc.descriptionJoshi, A.J., Porikli, F., Papanikolopoulos, N.P., Scalable active learning for multiclass image classification (2012) IEEE Trans. Pattern Anal. Mach. Intell, 34 (11), pp. 2259-2273. , Nov
dc.descriptionKeim, D.A., Panse, C., Sips, M., (2005) Information Visualization: Scope Techniques and Opportunities for Geovisualization, , New York NY USA: Elsevier
dc.descriptionKlanke, S., Vijayakumar, S., Schaal, S., A library for locally weighted projection regression (2008) J. Mach. Learn. Res, 9, pp. 623-626
dc.descriptionLegg, P.A., Chung, D.H., Parry, M.L., Bown, R., Jones, M.W., Griffiths, I.W., Chen, M., Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop (2013) IEEE Trans. Vis. Comput. Graph, 19 (12), pp. 2109-2118. , Dec
dc.descriptionLi, X., Guo, R., Cheng, J., Incorporating incremental and active learning for scene classification (2012) Proc. 11th Int. Conf. Mach. Learn. Appl, 1, pp. 256-261
dc.descriptionLiu, Y., Zhang, D., Lu, G., Ma, W.-Y., A survey of contentbased image retrieval with high-level semantics (2007) Pattern Recognit, 40 (1), pp. 262-282
dc.descriptionMigut, M., Worring, M., Visual exploration of classification models for risk assessment (2010) Proc. IEEE Symp. Vis. Anal. Sci. Technol, pp. 11-18
dc.descriptionMuthukumaravel, A., Purushothaman, S., Jothi, A., Implementation of locally weighted projection regression network for concurrency control in computer aided design (2011) Int. J. Adv. Comput. Sci. Appl, 2, pp. 46-50
dc.descriptionNguyen, G., Worring, M., Interactive access to large image collections using similarity-based visualization (2008) J. Vis. Lang. Comput, 19 (2), pp. 203-224
dc.descriptionPaiva, J.G., Florian, L., Pedrini, H., Telles, G., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE Trans. Vis. Comput. Graph, 17 (11), pp. 2459-2468. , Dec
dc.descriptionPaiva, J.G.S., Schwartz, W.R., Pedrini, H., Minghim, R., Semisupervised dimensionality reduction based on partial least squares for visual analysis of high dimensional data (2012) Comput. Graph. Forum, 31, pp. 1345-1354
dc.descriptionPaulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H., Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping (2008) IEEE Trans. Vis.Comput. Graph, 14 (3), pp. 564-575. , May/Jun
dc.descriptionPorter, M., An algorithm for suffix stripping (1980) Program, 14 (3), pp. 130-137
dc.descriptionStehling, R.O., Nascimento, M.A., Falcao, A.X., A compact and efficient image retrieval approach based on border/ interior pixel classification (2002) Proc. 11th Int. Conf. Inf. Knowl. Manage, pp. 102-109
dc.descriptionRodden, K., Basalaj, W., Sinclair, D., Wood, K., Does organisation by similarity assist image browsing? (2001) Proc. SIGCHI Conf. Human Factors Comput. Syst, pp. 190-197
dc.descriptionRüger, S., Putting the user in the loop: Visual resource discovery (2006) Proc. 3rd Int. Conf. Adaptive Multimedia Retrieval: User, 3877, pp. 1-18. , Context, Feedback
dc.descriptionSchwartz, W.R., Davis, L.S., Learning discriminative appearance- based models using partial least squares (2009) Proc. Brazilian Symp. Comput. Graph. Image Process, pp. 322-329. , Rio de Janeiro, Brazil
dc.descriptionSchwartz, W.R., Guo, H., Choi, J., Davis, L.S., Face identification using large feature sets (2012) IEEE Trans. Image Process, 21 (4), pp. 2245-2255. , Apr
dc.descriptionSettles, B., Active learning literature survey (2010) Dept. Comput. Sci, 1648. , Univ. Wisconsin, Madison, WI, USA, Tech. Rep
dc.descriptionShi, C., Xu, C., Yang, X., Study of tfidf algorithm (2009) J. Comput. Appl, 29, pp. 167-170
dc.descriptionTan, L., Song, Y., Liu, S., Xie, L., Imagehive: Interactive contentaware image summarization (2012) IEEE Comput. Graph. Appl, 32 (1), pp. 46-55. , Jan./Feb
dc.descriptionTan, P.-N., Steinbach, M., Kumar, V., (2005) Introduction to Data Mining, , Boston MA USA: Addison-Wesley
dc.descriptionTejada, E., Minghim, R., Nonato, L.G., On improved projection techniques to support visual exploration of multidimensional data sets (2003) Inf. Vis, 2 (4), pp. 218-231
dc.descriptionTong, S., Chang, E., Support vector machine active learning for image retrieval (2001) Proc. 9th ACM Int. Conf. Multimedia, pp. 107-118
dc.descriptionTong, Y., Safadi, B., Quénot, G., Incremental multi-classifier learning algorithm on grid'5000 for large scale image annotation (2010) Proc. Int. Workshop Very-Large-Scale Multimedia Corpus, Mining Retrieval, pp. 1-6
dc.descriptionTuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J., A survey of active learning algorithms for supervised remote sensing image classification (2011) IEEE J. Sel. Topics Signal Process, 5 (3), pp. 606-617. , Jun
dc.descriptionElzen Den S.Van, Van Wijk, J.J., BaobabView: Interactive construction and analysis of decision trees (2011) Proc. IEEE Conf. Vis. Analy. Sci. Technol, pp. 151-160
dc.descriptionMaaten Der L.Van, Hinton, G., Visualizing data using t-sne (2008) J. Mach. Learn. Res, 9 (11), pp. 2579-2605
dc.descriptionVijayakumar, S., D'Souza, A., Schaal, S., Incremental online learning in high dimensions (2005) Neural Comput, 17, pp. 2602-2634
dc.descriptionVijayakumar, S., Schaal, S., Locally weighted projection regression: An odn algorithm for incremental real time learning in high dimensional space (2000) Proc. Int. Conf. Mach. Learn, pp. 1079-1086. , Stanford, CA, USA
dc.descriptionWang, M., Hua, X.-S., Active learning in multimedia annotation and retrieval: A survey (2011) ACM Trans. Intell. Syst. Technol, 2 (2), p. 10
dc.descriptionWold, H., Partial least squares (1985) Encyclopedia of Statistical Sciences, 6, pp. 581-591. , New York, NY, USA: Wiley
dc.descriptionWorring, M., Easy categorization of large image collections by automatic analysis and information visualization (2013) Proc. Int. UDC Seminar Classification Vis.: Interfaces Knowl, p. 8
dc.descriptionZhou, X.S., Huang, T.S., Relevance feedback in image retrieval: A comprehensive review (2003) Multimedia Syst, 8 (6), pp. 536-544
dc.languageen
dc.publisherIEEE Computer Society
dc.relationIEEE Transactions on Visualization and Computer Graphics
dc.rightsfechado
dc.sourceScopus
dc.titleAn Approach To Supporting Incremental Visual Data Classification
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución