dc.creator | Paiva J.G.S. | |
dc.creator | Schwartz W.R. | |
dc.creator | Pedrini H. | |
dc.creator | Minghim R. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:51:05Z | |
dc.date | 2015-11-26T15:40:08Z | |
dc.date | 2015-06-25T17:51:05Z | |
dc.date | 2015-11-26T15:40:08Z | |
dc.date.accessioned | 2018-03-28T22:48:38Z | |
dc.date.available | 2018-03-28T22:48:38Z | |
dc.identifier | | |
dc.identifier | Ieee Transactions On Visualization And Computer Graphics. Ieee Computer Society, v. 21, n. 1, p. 4 - 17, 2014. | |
dc.identifier | 10772626 | |
dc.identifier | 10.1109/TVCG.2014.2331979 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84915819887&partnerID=40&md5=aeedddb13e3421e19b3b4f768d0306df | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85980 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85980 | |
dc.identifier | 2-s2.0-84915819887 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1264307 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models. | |
dc.description | 21 | |
dc.description | 1 | |
dc.description | 4 | |
dc.description | 17 | |
dc.description | FAPESP; São Paulo Research Foundation | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Agarwal, M., Goyal, M., Deo, M.C., Locally weighted projection regression for predicting hydraulic parameters (2010) Civil Eng. Environ. Syst, 27 (1), pp. 71-80 | |
dc.description | Bachmaier, C., Brandes, U., Schlieper, B., Drawing phylogenetic trees (2005) Proc. 16th Int. Conf. Algorithms Comput, 3827, pp. 1110-1121 | |
dc.description | Choo, J., Lee, C., Reddy, C.K., Park, H., Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization (2013) IEEE Trans. Vis. Comput. Graph, 19 (12), pp. 1992-2001. , Dec | |
dc.description | Choo, J., Lee, H., Kihm, J., Park, H., IVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction (2010) Proc. IEEE Symp. Vis. Analy. Sci. Technol, pp. 27-34 | |
dc.description | Ciocca, G., Cusano, C., Schettini, R., Semantic classification, low level features and relevance feedback for content-based image retrieval (2009) Proc. IS&T/SPIE Electron. Imaging, 7255, p. 72550D | |
dc.description | Cox, T.F., Cox, M.A.A., (2000) Multidimensional Scaling, , 2nd ed. London, U.K.: Chapman & Hall | |
dc.description | Cuadros, A.M., Paulovich, F.V., Minghim, R., Telles, G.P., Point placement by phylogenetic trees and its application for visual analysis of document collections (2007) Proc. IEEE Symp. Vis. Anal. Sci. Technol, pp. 99-106. , Sacramento, CA, USA | |
dc.description | Do, T.-N., Towards simple, easy to understand, an interactive decision tree algorithm (2007) College Inf. Technol, , Can tho Univ., Can Tho, Vietnam, Tech. Rep. 06-01 | |
dc.description | D'Souza, A., Vijayakumar, S., Schaal, S., Learning inverse kinematics (2001) Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, 1, pp. 298-303. , Maui, HI, USA | |
dc.description | Eades, P.A., A heuristic for graph drawing (1984) Congressus Numerantium, 42, pp. 149-160 | |
dc.description | Ess, A., Leibe, B., Schindler, K., Van Gool, L., A mobile vision system for robust multi-person tracking (2008) Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit, pp. 1-8. , Anchorage, AK, USA | |
dc.description | Fei-Fei, L., Fergus, R., Perona, P., Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories (2007) Comput. Vis. Image Understanding, 106 (1), pp. 59-70 | |
dc.description | Florez, J., Bellot, D., Morel, G., LWPR-model based predictive force control for serial comanipulation in beating heart surgery (2011) Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 320-326. , Budapest, Hungary | |
dc.description | Foody, G.M., Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm (2006) Remote Sens. Environ, 103 (2), pp. 179-189 | |
dc.description | Heimerl, F., Koch, S., Bosch, H., Ertl, T., Visual classifier training for text document retrieval (2012) IEEE Trans. Vis. Comput. Graph, 18 (12), pp. 2839-2848. , Dec | |
dc.description | Hoferlin, B., Netzel, R., Hoferlin, M., Weiskopf, D., Heidemann, G., Inter-active learning of ad-hoc classifiers for video visual analytics (2012) Proc. IEEE Conf. Vis. Anal. Sci. Technol, pp. 23-32 | |
dc.description | Hoi, S.C., Jin, R., Zhu, J., Lyu, M.R., Semi-supervised svm batch mode active learning for image retrieval (2008) Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 1-7 | |
dc.description | Hossain, M.S., Ojili, P.K.R., Grimm, C., Muller, R., Watson, L.T., Ramakrishnan, N., Scatter/gather clustering: Flexibly incorporating user feedback to steer clustering results (2012) IEEE Trans. Vis. Comput. Graph, 18 (12), pp. 2829-2838. , Dec | |
dc.description | Jolliffe, I., (2002) Principal Component Analysis, , 2nd ed. New York NY USA: Springer | |
dc.description | Joshi, A.J., Porikli, F., Papanikolopoulos, N.P., Scalable active learning for multiclass image classification (2012) IEEE Trans. Pattern Anal. Mach. Intell, 34 (11), pp. 2259-2273. , Nov | |
dc.description | Keim, D.A., Panse, C., Sips, M., (2005) Information Visualization: Scope Techniques and Opportunities for Geovisualization, , New York NY USA: Elsevier | |
dc.description | Klanke, S., Vijayakumar, S., Schaal, S., A library for locally weighted projection regression (2008) J. Mach. Learn. Res, 9, pp. 623-626 | |
dc.description | Legg, P.A., Chung, D.H., Parry, M.L., Bown, R., Jones, M.W., Griffiths, I.W., Chen, M., Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop (2013) IEEE Trans. Vis. Comput. Graph, 19 (12), pp. 2109-2118. , Dec | |
dc.description | Li, X., Guo, R., Cheng, J., Incorporating incremental and active learning for scene classification (2012) Proc. 11th Int. Conf. Mach. Learn. Appl, 1, pp. 256-261 | |
dc.description | Liu, Y., Zhang, D., Lu, G., Ma, W.-Y., A survey of contentbased image retrieval with high-level semantics (2007) Pattern Recognit, 40 (1), pp. 262-282 | |
dc.description | Migut, M., Worring, M., Visual exploration of classification models for risk assessment (2010) Proc. IEEE Symp. Vis. Anal. Sci. Technol, pp. 11-18 | |
dc.description | Muthukumaravel, A., Purushothaman, S., Jothi, A., Implementation of locally weighted projection regression network for concurrency control in computer aided design (2011) Int. J. Adv. Comput. Sci. Appl, 2, pp. 46-50 | |
dc.description | Nguyen, G., Worring, M., Interactive access to large image collections using similarity-based visualization (2008) J. Vis. Lang. Comput, 19 (2), pp. 203-224 | |
dc.description | Paiva, J.G., Florian, L., Pedrini, H., Telles, G., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE Trans. Vis. Comput. Graph, 17 (11), pp. 2459-2468. , Dec | |
dc.description | Paiva, J.G.S., Schwartz, W.R., Pedrini, H., Minghim, R., Semisupervised dimensionality reduction based on partial least squares for visual analysis of high dimensional data (2012) Comput. Graph. Forum, 31, pp. 1345-1354 | |
dc.description | Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H., Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping (2008) IEEE Trans. Vis.Comput. Graph, 14 (3), pp. 564-575. , May/Jun | |
dc.description | Porter, M., An algorithm for suffix stripping (1980) Program, 14 (3), pp. 130-137 | |
dc.description | Stehling, R.O., Nascimento, M.A., Falcao, A.X., A compact and efficient image retrieval approach based on border/ interior pixel classification (2002) Proc. 11th Int. Conf. Inf. Knowl. Manage, pp. 102-109 | |
dc.description | Rodden, K., Basalaj, W., Sinclair, D., Wood, K., Does organisation by similarity assist image browsing? (2001) Proc. SIGCHI Conf. Human Factors Comput. Syst, pp. 190-197 | |
dc.description | Rüger, S., Putting the user in the loop: Visual resource discovery (2006) Proc. 3rd Int. Conf. Adaptive Multimedia Retrieval: User, 3877, pp. 1-18. , Context, Feedback | |
dc.description | Schwartz, W.R., Davis, L.S., Learning discriminative appearance- based models using partial least squares (2009) Proc. Brazilian Symp. Comput. Graph. Image Process, pp. 322-329. , Rio de Janeiro, Brazil | |
dc.description | Schwartz, W.R., Guo, H., Choi, J., Davis, L.S., Face identification using large feature sets (2012) IEEE Trans. Image Process, 21 (4), pp. 2245-2255. , Apr | |
dc.description | Settles, B., Active learning literature survey (2010) Dept. Comput. Sci, 1648. , Univ. Wisconsin, Madison, WI, USA, Tech. Rep | |
dc.description | Shi, C., Xu, C., Yang, X., Study of tfidf algorithm (2009) J. Comput. Appl, 29, pp. 167-170 | |
dc.description | Tan, L., Song, Y., Liu, S., Xie, L., Imagehive: Interactive contentaware image summarization (2012) IEEE Comput. Graph. Appl, 32 (1), pp. 46-55. , Jan./Feb | |
dc.description | Tan, P.-N., Steinbach, M., Kumar, V., (2005) Introduction to Data Mining, , Boston MA USA: Addison-Wesley | |
dc.description | Tejada, E., Minghim, R., Nonato, L.G., On improved projection techniques to support visual exploration of multidimensional data sets (2003) Inf. Vis, 2 (4), pp. 218-231 | |
dc.description | Tong, S., Chang, E., Support vector machine active learning for image retrieval (2001) Proc. 9th ACM Int. Conf. Multimedia, pp. 107-118 | |
dc.description | Tong, Y., Safadi, B., Quénot, G., Incremental multi-classifier learning algorithm on grid'5000 for large scale image annotation (2010) Proc. Int. Workshop Very-Large-Scale Multimedia Corpus, Mining Retrieval, pp. 1-6 | |
dc.description | Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J., A survey of active learning algorithms for supervised remote sensing image classification (2011) IEEE J. Sel. Topics Signal Process, 5 (3), pp. 606-617. , Jun | |
dc.description | Elzen Den S.Van, Van Wijk, J.J., BaobabView: Interactive construction and analysis of decision trees (2011) Proc. IEEE Conf. Vis. Analy. Sci. Technol, pp. 151-160 | |
dc.description | Maaten Der L.Van, Hinton, G., Visualizing data using t-sne (2008) J. Mach. Learn. Res, 9 (11), pp. 2579-2605 | |
dc.description | Vijayakumar, S., D'Souza, A., Schaal, S., Incremental online learning in high dimensions (2005) Neural Comput, 17, pp. 2602-2634 | |
dc.description | Vijayakumar, S., Schaal, S., Locally weighted projection regression: An odn algorithm for incremental real time learning in high dimensional space (2000) Proc. Int. Conf. Mach. Learn, pp. 1079-1086. , Stanford, CA, USA | |
dc.description | Wang, M., Hua, X.-S., Active learning in multimedia annotation and retrieval: A survey (2011) ACM Trans. Intell. Syst. Technol, 2 (2), p. 10 | |
dc.description | Wold, H., Partial least squares (1985) Encyclopedia of Statistical Sciences, 6, pp. 581-591. , New York, NY, USA: Wiley | |
dc.description | Worring, M., Easy categorization of large image collections by automatic analysis and information visualization (2013) Proc. Int. UDC Seminar Classification Vis.: Interfaces Knowl, p. 8 | |
dc.description | Zhou, X.S., Huang, T.S., Relevance feedback in image retrieval: A comprehensive review (2003) Multimedia Syst, 8 (6), pp. 536-544 | |
dc.language | en | |
dc.publisher | IEEE Computer Society | |
dc.relation | IEEE Transactions on Visualization and Computer Graphics | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | An Approach To Supporting Incremental Visual Data Classification | |
dc.type | Artículos de revistas | |