Artículos de revistas
The Cratylia Mollis Seed Lectin Induces Membrane Permeability Transition In Isolated Rat Liver Mitochondria And A Cyclosporine A-insensitive Permeability Transition In Trypanosoma Cruzi Mitochondria
Registro en:
Journal Of Eukaryotic Microbiology. Blackwell Publishing Inc., v. 61, n. 4, p. 381 - 388, 2014.
10665234
10.1111/jeu.12118
2-s2.0-84896531390
Autor
Fernandes M.P.
Leite A.C.R.
Araujo F.F.B.
Saad S.T.O.
Baratti M.O.
Correia M.T.S.
Coelho L.C.B.B.
Gadelha F.R.
Vercesi A.E.
Institución
Resumen
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca2+ and mitochondrial dysfunction due to matrix Ca2+ overload. In order to investigate the mechanism of Ca2+-induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (ΔΨm) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca2+ was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca2+ this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ΔΨm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca2+ dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists. 61 4 381 388 Alves, M.J., Colli, W., Agglutination of Trypanosoma cruzi by concanavalin A (1974) J. Protozool., 21 (4), pp. 575-578 Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Molkentin, J.D., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death (2005) Nature, 434, pp. 658-662 Bernardi, P., Forte, M., The mitochondrial permeability transition pore (2007) Novartis Found. Symp., 287, pp. 157-264 Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Lisa, D., Forte, M.A., The mitochondrial permeability transition from in vitro artifact disease target (2006) FEBES J., 273, pp. 2077-2099 Bourguignon, S.C., De Souza, W., Souto-Padron, T., Localization of lectin-binding sites on the surface of Trypanosoma cruzi grown in chemically defined conditions (1998) Histochem. Cell Biol., 110 (5), pp. 527-534 Carranza, J.C., Kowaltowski, A.J., Mendonca, M.A., De Oliveira, T.C., Gadelha, F.R., Zingales, B., Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex i subunit genes (2009) J. Bioenerg. Biomembr., 41 (3), pp. 299-308 Castellani, O., Ribeiro, L.V., Fernandes, J.F., Differentiation of Trypanosoma cruzi in culture (1967) J. Protozool., 14 (3), pp. 447-451 Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking (1996) J. Bioenerg. Biomembr., 28, pp. 523-529 Cestari, I., Evans-Osses, I., Schlapbach, L.J., De Messias-Reason, I., Ramirez, M.I., Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites (2013) Mol. Immunol., 53 (4), pp. 328-334 Correia, M.T.S., Coelho, L.C.B.B., Purification of a glucose/mannose specific, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean) (1995) Appl. Biochem. Biotech., 55, pp. 262-273 Crompton, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem. J., 341 (2), pp. 233-249 Docampo, R., Lukeš, J., Trypanosomes and the solution to a 50-year mitochondrial calcium mystery (2012) Trends Parasitol., 28 (1), pp. 31-37 Docampo, R., Vercesi, A.E., Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ (1989) J. Biol. Chem., 264 (1), pp. 108-111 Docampo, R., Vercesi, A.E., Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ (1989) Arch. Biochem. Biophys., 272, pp. 122-129 Docampo, R., Lopes, J.N., Cruz, F.S., Souza, W., Trypanosoma cruzi: Ultrastructural and metabolic alterations of epimastigotes by beta-lapachone (1977) Exp. Parasitol., 42 (1), pp. 142-149 Fagian, M.M., Pereira-Da-Silva, L., Martins, I.S., Vercesi, A.E., Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J. Biol. Chem., 265, pp. 19955-19960 Fernandes, M.P., Inada, N.M., Chiaratti, M.R., Araújo, F.F.B., Meirelles, F.V., Correia, M.T.S., Coelho, L.C.B.B., Vercesi, A.E., Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin (2010) J. Bioenerg. Biomembr., 42, pp. 69-78 Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C.B., Kowaltowski, A.J., Sluse, F.E., Vercesi, A.E., Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health (2013) Antioxid. Redox Signal., 18 (16), pp. 1-46 Fortes, F., Castilho, R.F., Catisti, R., Carnieri, E.G., Vercesi, A.E., Ca2+ induces a cyclosporin A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species (2001) J. Bioenerg. Biomembr., 33, pp. 43-51 Gadelha, F.R., Gonçalves, C.C., Mattos, E.C., Alves, M.J., Piñeyro, M.D., Robello, C., Peloso, E.F., Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes (2013) Exp. Parasitol., 133 (3), pp. 287-293 Giorgio, V., Von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G.D., Bernardi, P., Dimers of mitochondrial ATP Synthase form the permeability transition pore (2013) PNAS, 110 (15), pp. 5887-5892 Glancy, B., Balaban, R.S., Role of mitochondrial Ca2+ in the regulation of cellular energetics (2012) Biochemistry, 51 (14), pp. 2959-2973 Gornall, A.G., Bardawill, C.J., David, M.M., Determination of serum proteins by means of the biuret reaction (1949) J. Biol. Chem., 177 (2), pp. 751-766 Hajnõczky, G., Csordás, G., Yi, M., Old players in a new role: Mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria (2002) Cell Calcium, 32, pp. 363-377 Hajnõczky, G., Csordás, G., Madesh, M., Pacher, P., The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria (2000) J. Physiol., 529, pp. 69-81 Hansson, M.J., Morata, S., Chen, L., Matsuyama, N., Suzuky, Y., Nakajima, S., Tanoue, T., Elmer, E., Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria (2011) J. Neurotrauma, 28, pp. 143-153 Holmskov, U., Thiel, S., Jensenius, J.C., Collectins and ficolins: Humoral lectins of the innate immune defense (2003) Annu. Rev. Immunol., 21, pp. 547-578 Huang, G., Vercesi, A.E., Docampo, R., Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter (2013) Nat. Commun., 4, p. 2865. , doi: 10.1038/ncomms3865 Irigoin, F., Inada, N.M., Fernandes, M.P., Piacenza, L., Gadelha, F.R., Vercesi, A.E., Radi, R., Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi (2009) Biochem. J., 418, pp. 595-604 Jacobson, R.L., Doyle, R.J., Lectin-parasite interactions (1996) Parasitol. Today, 12 (2), pp. 55-61 Jung, D.W., Bradshaw, P.C., Pfeiffer, D.R., Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria (1997) J. Biol. Chem., 272 (34), pp. 21104-21112 Kaplan, R.R., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) J. Biochem., 212, pp. 279-288 Kim, G.W., Kondo, T., Noshita, N., Chan, P.H., Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: Implications for the production and role of superoxide radicals (2002) Stroke, 33, pp. 809-815 Kokoszka, J.E., Waymire, K.G., Levy, S.E., Sligh, J.E., Cai, J., Jones, D.P., Macgregor, G.R., Wallace, D.C., The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore (2004) Nature, 427, pp. 461-465 Kowaltowski, A.J., Vercesi, A.E., Reactive oxygen generation by mitochondria (2001) Mitochondria in Pathogenesis, pp. 281-294. , Lemasters, J.J. & Nieminen, A.-L. (ed.), Kluwer Academic/Penum Publishers, New York Krauskopf, A., Eriksson, O., Craigen, W.J., Forte, M.A., Bernardi, P., Properties of the permeability transition in VDAC1(-/-) mitochondria (2006) Biochim. Biophys. Acta, 1757, pp. 590-595 Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death (2007) Physiol. Rev., 87, pp. 99-163 Lemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim. Biophys. Acta, 1787 (11), pp. 1395-1401 Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275 Martin, L.J., Mitochondrial and cell death mechanisms in neurodegenerative diseases (2010) Pharmaceuticals (Basel), 3, pp. 839-8915 Moreno, S.N., Docampo, R., Vercesi, A.E., Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release (1992) J. Biol. Chem., 267 (9), pp. 6020-6026 Moreno, S.N., Docampo, R., Calcium regulation in protozoan parasites (2003) Curr. Opin. Microbiol., 6 (4), pp. 359-364 Moreno, S.N., Vercesi, A.E., Pignataro, O.P., Docampo, R., Calcium homeostasis in Trypanosoma cruzi amastigotes: Presence of inositol phosphates and lack of an inositol 1,4,5-trisphosphate-sensitive calcium pool (1992) Mol. Biochem. Parasitol., 52, pp. 251-261 Murphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., Fiskum, G., Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria (1996) Proc. Natl Acad. Sci. USA, 93, pp. 9893-9898 Opperdoes, F.R., Michels, P.A.M., Complex i of trypanosomatidae: Does it exist? (2008) Trends Parasitol, 24 (7), pp. 310-317 Peloso, E.F., Gonçalves, C.C., Silva, T.M., Ribeiro, L.H., Piñeyro, M.D., Robello, C., Gadelha, F.R., Tryparedoxin peroxidases and superoxide dismutases expression as well as ROS release are related to Trypanosoma cruzi epimastigotes growth phases (2012) Arch. Biochem. Biophys., 520 (2), pp. 117-122 Piacenza, L., Irigoín, F., Alvarez, M.N., Peluffo, G., Taylor, M.C., Kelly, J.M., Wilkinson, S.R., Radi, R., Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: Cytoprotective actions of mitochondrial iron superoxide dismutase overexpression (2007) Biochem. J., 403 (2), pp. 323-334 Piacenza, L., Peluffo, G., Radi, R., L-arginine metabolism in Trypanosoma cruzi in the regulation of programmed cell death (2002) Methods Enzymol., 359, pp. 286-302 Rasola, A., Sciacovelli, M., Pantic, B., Bernardi, P., Signal transduction to the permeability transition pore (2010) FEBS Lett., 584 (10), pp. 1989-1996 Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., Pozzan, T., Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses (1998) Science, 280, pp. 1763-1766 Ronchi, J.A., Vercesi, A.E., Castilho, R.F., Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts (2011) J. Bioenerg. Biomembr., 43, pp. 709-715 Rothfuchs, A.G., Roffê, E., Gibson, A., Cheever, A.W., Ezekowitz, R.A., Takahashi, K., Steindel, M., Báfica, A., Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi (2012) PLoS ONE, 7 (11), pp. e47835 Souza, S.R., Dutra, R.F., Correia, M.T.S., Pessoa, M.M.A., Lima-Filho, J.L., Coelho, L.C.B.B., Electrochemical potential of free and immobilized Cratylia mollis seed lectin (2003) Bioresource Technol., 88, pp. 255-258 Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S., Moll, U.M., P53 opens the mitochondrial permeability transition pore to trigger necrosis (2012) Cell, 149, pp. 1536-1548 Velho, J.A., Okanobo, H., Degasperi, G.R., Matsumoto, M.Y., Alberici, L.C., Cosso, R.G., Oliveira, H.C., Vercesi, A.E., Statins induce calcium-dependent mitochondrial permeability transition (2006) Toxicology, 219 (13), pp. 124-132 Vercesi, A.E., Bernardes, C.F., Hoffmann, M.E., Gadelha, F.R., Docampo, R., Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ (1991) J. Biol. Chem., 266 (22), pp. 14431-14434 Vercesi, A.E., Hoffmann, M.E., Bernardes, C.F., Docampo, R., Regulation of intracellular calcium homeostasis in Trypanosoma cruzi. Effects of calmidazolium and trifluoperazine (1991) Cell Calcium, 12 (5), pp. 361-369 Zhou, M., Diwu, Z., Panchuk-Voloshina, N., Haugland, R.P., A stable nonfluorescent derivative of resofurin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases (1997) Anal. Biochem., 253 (2), pp. 162-168