Artículos de revistas
Phylogenetics, Ancestral State Reconstruction, And A New Infrafamilial Classification Of The Pantropical Ochnaceae (medusagynaceae, Ochnaceae S.str., Quiinaceae) Based On Five Dna Regions
Registro en:
Molecular Phylogenetics And Evolution. Academic Press Inc., v. 78, n. 1, p. 199 - 214, 2014.
10557903
10.1016/j.ympev.2014.05.018
2-s2.0-84901910973
Autor
Schneider J.V.
Bissiengou P.
Amaral M.D.C.E.
Tahir A.
Fay M.F.
Thines M.
Sosef M.S.M.
Zizka G.
Chatrou L.W.
Institución
Resumen
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+. Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system. © 2014 Elsevier Inc. 78 1 199 214 Amaral, M.C.E., Phylogenetische Systematik der Ochnaceae (1991) Bot. Jahrb. Syst., 113, pp. 105-196 Amaral, M.C.E., Inclusion of Sinia in Sauvagesia (Ochnaceae) (2006) Novon, 16, pp. 1-2 Amaral, M.C.E., Bittrich, V., Ontogenia inicial do androceu de espécies de Ochnaceae subfam. Sauvagesioideae através da análise em microscopia eletrÔnica de varredura (1998) Rev. Bras. Bot., 21, pp. 269-273 Amaral, M.C.E., Bittrich, V., (2014) Ochnaceae. Families and Genera of Vascular Plants, 11, pp. 253-268. , Springer Verlag, Heidelberg Apg, I.I.I., An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III (2009) Bot. J. Linn. Soc., 161, pp. 105-121 Armbruster, W.S., Debevec, E.M., Willson, M.F., Evolution of syncarpy in angiosperms: theoretical and phylogenetic analysesof the effects of carpel fusion on offspring quantity and quality (2002) J. Evol. Biol., 15, pp. 657-672 Baum, H., Die Frucht von Ochna multiflora, ein Fall ökologischer Apokarpie (1951) Österr. Bot. Z., 98, pp. 383-394 Bell, C.D., Soltis, D.E., Soltis, P., The age and diversification of angiosperms re-revisited (2010) Am. J. Bot., 97, pp. 1296-1303 Bergsten, J., Nilsson, A.N., Ronquist, F., Bayesian tests of topology hypotheses with an example from diving beetles (2013) Syst. Biol., 62, pp. 660-673 Bissiengou, P., Chatrou, L.W., Wieringa, J.J., Sosef, M.S.M., Taxonomic novelties in the genus Campylospermum (Ochnaceae) (2013) Blumea, 58, pp. 1-7 Callmander, M.W., Buerki, S., Phillipson, P.B., The genus Brackenridgea A. Gray (Ochnaceae) in Madagascar (2010) Candollea, 65, pp. 374-375 Cameron, K.M., Chase, M.W., Anderson, W.R., Hills, H.G., Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences (2001) Am. J. Bot., 88, pp. 1847-1862 Campbell, V., Lapointe, F.-J., The use and validity of composite taxa in phylogenetic analysis (2009) Syst. Biol., 58, pp. 560-572 Castresana, J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis (2000) Mol. Biol. Evol., 17, pp. 540-552 A DNA barcode for land plants (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 12794-12797. , CBOL Working Groupdf Cho, S., Zwick, A., Regier, J.C., Mitter, C., Cummings, M.P., Yao, J., Du, Z., Parr, C., Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera) (2011) Syst. Biol., 60, pp. 782-796 Couvreur, T.L.P., Chatrou, L.W., Sosef, M.S.M., Richardson, J.E., Molecular phylogenetics reveals multiple tertiary vicariance origins of the African rain forest trees (2008) BMC-Biology, 6, p. 54 Couvreur, T.L.P., Franzke, A., Al-Shehbaz, I.A., Bakker, F.T., Koch, M.A., Mummenhoff, K., Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae) (2010) Mol. Biol. Evol., 27, pp. 55-71 Cronquist, A., (1988) The Evolution and Classification of Flowering Plants, , New York Botanical Garden, New York Davis, C.C., Chase, M.W., Elatinaceae are sister to Malpighiaceae Peridiscaceae belong to Saxifragales (2004) Am. J. Bot., 91, pp. 262-273 Davis, C.C., Webb, C.O., Wurdack, K.J., Jaramillo, C.A., Donoghue, M.J., Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests (2005) Am. Nat., 165, pp. E36-E65 De Luca, P.A., Vallejo-Marín, M., What's the buzz about? The ecology and evolutionary significance of buzz-pollination (2013) Curr. Opin. Plant Biol., 16, pp. 429-435 de Queiroz, A., Gatesy, J., The supermatrix approach to systematics (2007) Trends Ecol. Evol., 22, pp. 34-41 Dickison, W.C., The morphology and relationships of Medusagyne (Medusagynaceae) (1990) Plant Syst. Evol., 171, pp. 27-55 Donoghue, M.J., Ree, R.H., Baum, D.A., Phylogeny and the evolution of flower symmetry in the Asteridae (1998) Trends Plant Sci., 3, pp. 311-317 Doumenge, C., Séné, V.O., (2012), http://www.prota4u.org/search.asp, Lophira alata Banks ex C.F.Gaertn. In: Lemmens, R.H.M.J., Louppe, D., Oteng-Amoako, A.A. (Eds.), PROTA (Plant Resources of Tropical Africa/Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. (accessed 06.06.01)Doyle, J.J., Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue (1987) Phytochem. Bull. Bot. Soc. Am., 19, pp. 11-15 Dwyer, J.D., The taxonomy of the monogeneric tribe Elvasieae (Ochnaceae) (1943) Bull. Torrey Bot. Club, 70, pp. 42-49 Dwyer, J.D., The taxonomy of Godoya R. and P., Rhytidanthera van Tieghem, and Cespedezia Goudot (Ochnaceae) (1946) Lloydia, 9, pp. 45-61 Eernisse, D.J., Kluge, A.G., Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology (1993) Mol. Biol. Evol., 10, pp. 1170-1195 Endress, P.K., Angiosperm floral evolution: morphological developmental framework (2006) Adv. Bot. Res., 44, pp. 1-61 Endress, P.K., Evolutionary diversification of the flowers in angiosperms (2011) Am. J. Bot., 98, pp. 370-396 Endress, P.K., Davis, C.C., Matthews, M.L., Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants (2013) Ann. Bot., 111, pp. 969-985 Engler, A., Über Begrenzung und systematische Stellung der natürlichen Familie der Ochnaceae. Nov. Acta Acad. Caesareae Leopoldino-Carolinae Germ (1874) Nat. Curiosorum, 37, pp. 1-28 Farris, J.S., A successive approximations approach to character weighting (1969) Syst. Zool., 18, pp. 374-385 Farris, J.S., Källersjö, M., Kluge, A.G., Bult, C., Testing significance of incongruence (1994) Cladistics, 10, pp. 315-319 Farron, C., Contribution à la taxinomie des Ourateae Engl. (Ochnacées) (1963) Ber. Schweiz. Bot. Ges., 73, pp. 196-217 Farron, C., Les Ouratinae (Ochnaceae) d'Afrique continentale. Cartes de distribution et clés de determination de tous les genres et espèces (1985) Bot. Helv., 95, pp. 59-72 Fay, M.F., Swensen, S.M., Chase, M.W., Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae) (1997) Kew Bull., 52, pp. 111-120 Felsenstein, J., Cases in which parsimony or compatibility methods will be positively misleading (1978) Syst. Biol., 27, pp. 401-410 Fiaschi, P., Nicoletti de Fraga, C., Yamamoto, K., (2010), http://www.kew.org/science/tropamerica/neotropikey/families/Ochnaceae_s.l._(incl._Quiinaceae).htm, Neotropical Ochnaceae s.l. (incl. Quiinaceae). In: Milliken, W., Klitgård, B., Baracat, A. (Eds. 2009 onwards), Neotropikey - Interactive Key and Information Resources for Flowering Plants of the Neotropics. (accessed 20.06.13)Gilg, E., (1893), 1 (3-6), pp. 131-153. , Ochnaceae. In: Engler, A., Prantl, K. (Eds.), Die natürlichen Pflanzenfamilien, Ed. Wilhelm Engelmann, LeipzigGilg, E., Ueber den anatomischen Bau der Ochnaceae und die systematische Stellung der Gattungen Lophira Banks and Tetramerista Miq (1893) Ber. Deutsche Bot. Ges., 11, pp. 20-25 Godfray, H.C.J., Knapp, S., (2004) Introduction. Phil. Trans. R. Soc. Lond. B, 359, pp. 559-569 Gonmadje, C.F., Doumenge, C., McKey, D., Tchouto, G.P.M., Sunderland, T.C.H., Balinga, M.P.B., Sonké, B., Tree diversity and conservation value of Ngovayang's lowland forest, Cameroon (2011) Biodivers. Conserv., 20, pp. 2627-2648 Gottwald, H., Parameswaran, N., Beitrage zur Anatomie und Systematik der Quiinaceae (1967) Bot. Jahrb. Syst., 87, pp. 361-381 Graybeal, A., Is it better to add taxa or characters to a difficult phylogenetic problem? (1998) Syst. Biol., 47, pp. 9-17 Heath, T.A., Hedtke, S.M., Hillis, D.M., Taxon sampling and the accuracy of phylogenetic analyses (2008) J. Syst. Evol., 46, pp. 239-257 Hickey, L.J., Wolfe, J.A., The bases of angiosperm phylogeny: vegetative morphology (1975) Ann. Missouri Bot. Gard., 62, pp. 538-589 Hirota, M., Holmgren, M., van Nes, E.H., Scheffer, M., Global resilience of tropical forest and savanna to critical transitions (2011) Science, 334, pp. 232-235 Huelsenbeck, J.P., Ronquist, F., MrBayes: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755 Jansen, S., Baas, P., Smets, E., Vestured pits: their occurrence and systematic importance in eudicots (2001) Taxon, 50, pp. 135-167 Johnson, L.A., Soltis, D.E., Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences (1995) Ann. Missouri Bot. Gard., 82, pp. 149-175 Kanis, A., A revision of the Ochnaceae of the Indo-Pacific area (1968) Blumea, 16, pp. 1-82 Kass, R.E., Raftery, A.E., Bayes factors (1995) J. Am. Stat. Assoc., 90, pp. 773-795 Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucl. Acids Res., 30, pp. 3059-3066 Katoh, K., Asimenos, G., Toh, H., Multiple alignment of DNA sequences with MAFFT (2009) Methods Mol. Biol., 537, pp. 39-64 Korotkova, N., Schneider, J.V., Quandt, D., Worberg, A., Zizka, G., Borsch, T., Phylogeny of the eudicot order Malpighiales: analysis of a recalcitrant clade with sequences of the petD group II intron (2009) Plant Syst. Evol., 282, pp. 201-228 Kubitzki, K., Amaral, M.C.E., Transference of function in the pollination system of the Ochnaceae (1991) Plant Syst. Evol., 177, pp. 77-80 Kück, P., Mayer, C., Wägele, J.-W., Misof, B., Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model (2012) PLoS ONE, 7 (5), pp. e36593 Li, S., Pearl, D.K., Doss, D., Phylogenetic tree construction using Markov chain Monte Carlo (2000) J. Am. Stat. Assoc., 95, pp. 493-508 Maddison, W.P., Maddison, D.R., (2011), http://mesquiteproject.org, Mesquite: a modular system for evolutionary analysis. Version 2.75Matthews, M.L., Amaral, M.C.E., Endress, P.K., Comparative floral structure and systematics in Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae Malpighiales) (2012) Bot. J. Linn. Soc., 170, pp. 299-392 Meade, A., Pagel, M., (2011), http://www.evolution.reading.ac.uk/BayesTrees.html, BayesTrees 1.3Miller, M.A., Pfeiffer, W., Schwartz, T., (2010), pp. 1-8. , Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LAMuellner, A.N., Samuel, R., Chase, M.W., Pannell, C.M., Greger, H., Aglaia (Meliaceae): an evaluation of taxonomic concepts based on DNA data and secondary metabolites (2005) Am. J. Bot., 92, pp. 534-543 Oduro, K.A., (2012), http://www.prota4u.org/search.asp, Testulea gabonensis Pellegr. In: Lemmens, R.H.M.J., Louppe, D., Oteng-Amoako, A.A. (Eds.), PROTA (Plant Resources of Tropical Africa/Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. (accessed 06.06.01)Olmstead, R.G., Sweere, J.A., Combining data in phylogenetic systematics - an empirical approach using three molecular data sets in the Solanaceae (1994) Syst. Biol., 43, pp. 467-481 Pagel, M., Meade, A., Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo (2006) Am. Nat., 167, pp. 808-825 Pagel, M., Meade, A., Barker, D., Bayesian estimation of ancestral character states on phylogenies (2004) Syst. Biol., 53, pp. 673-684 Posada, D., Crandall, K.A., Modeltest: testing the model of DNA substitution (1998) Bioinformatics, 14, pp. 817-818 Rambaut, A., Drummond, A.J., (2007), http://beast.bio.ed.ac.uk/Tracer, Tracer v1.5. Available at:Rannala, B., Yang, Z.H., Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference (1996) J. Mol. Evol., 43, pp. 304-311 Rannala, B., Huelsenbeck, J.P., Yang, Z., Nielsen, R., Taxon sampling and the accuracy of large phylogenies (1998) Syst. Biol., 47, pp. 702-710 Ridley, H.N., (1922) The Flora of the Malay Peninsula, , Reeve, London Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsenbeck, J.P., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542 Sargent, R.D., Floral symmetry affects speciation rates in angiosperms (2004) Proc. R. Soc. B, 271, pp. 603-608 Särkinen, T., Staats, M., Richardson, J.E., Cowan, R.S., Bakker, F.T., How to open the treasure chest? Optimising DNA extraction from herbarium specimens (2012) PLoS ONE, 7 (8), pp. e43808 Sastre, C., Recherches sur les Ochnacées. II. Les espèces de Sauvagesia L. à placentation basale (1970) Caldasia, 10, pp. 497-516 Sastre, C., Essai de taxonomie numérique et schéma évolutif du genre Sauvagesia L (1971) Sellowia, 23, pp. 9-44 Sastre, C., Studies on the flora of the Guianas: 30. Considérations phytogéographiques sur les Ochnacées Guyanaises (1987) Compt. Rend. Sommaire Séances Soc. Biogeogr., 63, pp. 89-97 Sastre, C., Studies on the Flora of the Guianas 34. Synopsis generis Ouratea Aublet (Ochnaceae) (1988) Adansonia, 10, pp. 47-67 Sastre, C., (2003) Ochnaceae Flora of the Venezuelan Guayana, 7, pp. 124-161. , Missouri Botanical Garden, Saint Louis Sastre, C., Lescure, J.P., Elvasia elvasioides (Ochnaceae) et les espèces affines (1978) Caldasia, 12, pp. 131-144 Savolainen, V., Fay, M.F., Albach, D.C., Backlund, A., van der Bank, M., Cameron, K.M., Johnson, S.A., Chase, M.W., Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences (2000) Kew Bull., 55, pp. 257-309 Schneider, J.V., Zizka, G., Two new species of Quiinaceae (Quiina, Froesia) from the Venezuelan Guayana and some remarks on the genus Froesia Pires (1997) Novon, 7, pp. 406-412 Schneider, J.V., Zizka, G., Taxonomic revision of the neotropical genus Lacunaria (Quiinaceae/Ochnaceae s.l.) (2012) Syst. Bot., 37, pp. 165-188 Schneider, J.V., Zizka, G., in press. Quiinaceae. Flora Neotropica MonographsSchneider, J.V., Swenson, U., Zizka, G., Phylogenetic reconstruction of the Neotropical family Quiinaceae (Malpighiales) based on morphology and some remarks on the evolution of an androdioecious sex distribution (2002) Ann. Missouri Bot. Gard., 89, pp. 64-76 Schneider, J.V., Swenson, U., Samuel, R., Stuessy, T.F., Zizka, G., Phylogeny of Quiinaceae (Malpighiales): evidence from trnL-trnF sequence data and morphology (2006) Plant Syst. Evol., 257, pp. 189-203 Shimodaira, H., Hasegawa, M., Multiple comparisons of log-likelihoods with applications to phylogenetic inference (1999) Mol. Biol. Evol., 16, pp. 1114-1116 Silvestro, D., Michalak, I., RaxmlGUI: a graphical front-end for RAxML (2012) Org. Divers. Evol., 12, pp. 335-337 Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T., Hughes, C.E., Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 20359-20364 Soltis, D.E., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C., Brockington, S.F., Refulio-Rodriguez, N.F., Soltis, P.S., Angiosperm phylogeny: 17 genes, 640 taxa (2011) Am. J. Bot., 98, pp. 704-730 Sosef, M.S.M., (2008), 3 (30), pp. 119-135. , Révision du genre africain Rhabdophyllum Tiegh. (Ochnaceae), avec sa distribution au Cameroun et au Gabon. Adansonia, sérSosef, M.S.M., The genus Idertia (Ochnaceae) (2013) Plant Ecol. Evol., 146, pp. 351-359 Stamatakis, A., RaxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690 Stebbins, G.L., (1974) Flowering Plants: Evolution Above the Species Level, , Harvard University Press, Cambridge Stevens, P.F., (2001), http://www.mobot.org/MOBOT/research/APweb/, onwards. Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. (accessed 20.06.13)Steyermark, J.A., Flora of the Venezuelan Guayana I (1984) Ann. Missouri Bot. Gard., 71, pp. 297-340 Stropp, J., van der Sleen, P., Assunção, P.A., da Silva, A.L., Ter Steege, H., Tree communities of white-sand and terra-firme forests of the upper Rio Negro (2011) Acta Amaz., 41, pp. 521-544 Taberlet, P., Gielly, L., Pautou, G., Bouvet, J., Universal primers for amplification of three non-coding regions of the chloroplast DNA (1991) Plant Mol. Biol., 17, pp. 1105-1109 Takhtajan, A., (1991) Evolutionary Trends in Flowering Plants, , Columbia University Press, New York Talavera, G., Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments (2007) Syst. Biol., 56, pp. 564-577 Telle, S., Thines, M., Amplification of cox2 (~620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases (2008) PLoS ONE, 3 (10), pp. e3584 (2013), http://www.tropicos.org, Tropicos.org., Missouri Botanical Garden (accessed 20.06.13)Vaidya, G., Lohman, D.J., Meier, R., SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information (2011) Cladistics, 27, pp. 171-180 van Tieghem, P., Sur les Ochnacées (1902) Ann. Sci. Nat. Bot. sér., 8 (16), pp. 161-416 Vargas, P., Baldwin, B.G., Constance, L., Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae) (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 235-240 Verdcourt, B., (2005) Ochnaceae. Flora of Tropical East Africa, pp. 1-60. , Royal Botanic Gardens, Kew, H.J. Beentje, S.A. Ghazanfar (Eds.) Wallnöfer, B., A revision of Perissocarpa Steyerm. & Maguire (Ochnaceae) (1998) Ann. Naturhist. Mus. Wien, 100 B, pp. 683-707 White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (1990) PCR Protocols: A Guide to Methods and Applications, pp. 315-322. , Academic Press, San Diego, M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds.) Wiens, J.J., Morrill, M.C., Missing data in phylogenetic analysis: reconciling results from simulations and empirical data (2011) Syst. Biol., 60, pp. 719-731 Wurdack, K.J., Davis, C.C., Malpighiales phylogenetics: gaining ground on some of the most recalcitrant clades in the angiosperm tree of life (2009) Am. J. Bot., 96, pp. 1551-1570 Xi, Z., Ruhfel, B.R., Schaefer, H., Amorim, A.M., Sugumaran, M., Wurdack, K.J., Endress, P.K., Davis, C.C., Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 17519-17524 Xie, W., Lewis, P.O., Fan, Y., Kuo, L., Chen, M.-H., Improving marginal likelihood estimation for Bayesian phylogenetic model selection (2011) Syst. Biol., 60, pp. 150-160 Zizka, G., Schneider, J.V., The genus Touroulia Aubl. (Quiinaceae) (1999) Willdenowia, 29, pp. 1-8