dc.creator | Andreani R. | |
dc.creator | Martinez J.M. | |
dc.creator | Santos L.T. | |
dc.creator | Svaiter B.F. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:50:58Z | |
dc.date | 2015-11-26T15:38:58Z | |
dc.date | 2015-06-25T17:50:58Z | |
dc.date | 2015-11-26T15:38:58Z | |
dc.date.accessioned | 2018-03-28T22:47:28Z | |
dc.date.available | 2018-03-28T22:47:28Z | |
dc.identifier | | |
dc.identifier | Optimization Methods And Software. , v. 29, n. 3, p. 646 - 657, 2014. | |
dc.identifier | 10556788 | |
dc.identifier | 10.1080/10556788.2013.841692 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84890439972&partnerID=40&md5=fc225c5a69678c5294e6b51101b11a9f | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85952 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85952 | |
dc.identifier | 2-s2.0-84890439972 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1264029 | |
dc.description | Sequential optimality conditions are related to stopping criteria for nonlinear programming algorithms. Local minimizers of continuous optimization problems satisfy these conditions without constraint qualifications. It is interesting to discover whether well-known optimization algorithms generate primal-dual sequences that allow one to detect that a sequential optimality condition holds. When this is the case, the algorithm stops with a correct diagnostic of success (convergence). Otherwise, closeness to a minimizer is not detected and the algorithm ignores that a satisfactory solution has been found. In this paper it will be shown that a straightforward version of the Newton-Lagrange (sequential quadratic programming) method fails to generate iterates for which a sequential optimality condition is satisfied. On the other hand, a Newtonian penalty-barrier Lagrangian method guarantees that the appropriate stopping criterion eventually holds. © 2013 © 2013 Taylor & Francis. | |
dc.description | 29 | |
dc.description | 3 | |
dc.description | 646 | |
dc.description | 657 | |
dc.description | Andreani, R., Martínez, J.M., Schuverdt, M.L., On the relation between the constant positive linear dependence condition and quasinormality constraint qualification (2005) J. Optim. Theory Appl, 125, pp. 473-485. , doi: 10.1007/s10957-004-1861-9 | |
dc.description | Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L., On augmented Lagrangian methods with general lower-level constraints (2007) SIAM J. Optim, 18, pp. 1286-1309. , doi: 10.1137/060654797 | |
dc.description | Andreani, R., Martínez, J.M., Svaiter, B.F., A new sequential optimality condition for constrained optimization and algorithmic consequences (2010) SIAM J. Optim, 20, pp. 3533-3554. , doi: 10.1137/090777189 | |
dc.description | Andreani, R., Haeser, G., Martínez, J.M., On sequential optimality conditions for smooth constrained optimization (2011) Optimization, 60, pp. 627-641. , doi: 10.1080/02331930903578700 | |
dc.description | Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S., Two new weak constraint qualifications and applications (2012) SIAM J. Optim, 22, pp. 1109-1135. , doi: 10.1137/110843939 | |
dc.description | Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S., A relaxed constant positive linear dependence constraint qualification and applications (2012) Math. Program, 135, pp. 255-273. , doi: 10.1007/s10107-011-0456-0 | |
dc.description | Arutyunov, A.V., (2000) Optimality Conditions - Abnormal and Degenerate Problems, , Kluwer, Dordrecht | |
dc.description | Bartholomew-Biggs, M.C., Recursive quadratic programming methods based on the augmented Lagrangian (1987) Math. Program. Study, 31, pp. 21-41. , doi: 10.1007/BFb0121177 | |
dc.description | Benson, H.Y., Shanno, D.F., Vanderbei, R.J., Interior-point methods for nonconvex nonlinear programming - Filter methods and merit functions (2002) Comput. Optim. Appl, 23, pp. 257-272. , doi: 10.1023/A:1020533003783 | |
dc.description | Bertsekas, D.P., (1999) Nonlinear Programming, , Athena Scientific, Belmont, MA | |
dc.description | Bielschowsky, R.H., Gomes, F.A.M., Dynamic control of infeasibility in equality constrained optimization (2008) SIAM J. Optim, 19, pp. 1299-1325. , doi: 10.1137/070679557 | |
dc.description | Byrd, R.H., Gilbert, J.Ch., Nocedal, J., A trust region method based on interior point techniques for nonlinear programming (2000) Math. Program, 89, pp. 149-185. , doi: 10.1007/PL00011391 | |
dc.description | Byrd, R.H., Nocedal, J., Waltz, R.A., KNITRO - An integrated package for nonlinear optimization (2006) Large-Scale Nonlinear Optimization, pp. 35-59. , in, G. Di Pillo and M. Roma, eds. Springer, New York | |
dc.description | Conn, A.R., Gould, N.I.M., Toint, Ph.L., (2000) Trust Region Methods, , MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA | |
dc.description | Contesse-Becker, L., Extended convergence results for the method of multipliers for non-strictly binding inequality constraints (1993) J. Optim. Theory Appl, 79, pp. 273-310. , doi: 10.1007/BF00940582 | |
dc.description | Di Pillo, G., Lucidi, S., An augmented Lagrangian function with improved exactness properties (2001) SIAM J. Optim, 12, pp. 376-406. , doi: 10.1137/S1052623497321894 | |
dc.description | Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L., An exact augmented Lagrangian function for nonlinear programming with two-sided constraints (2003) Comput. Optim. Appl, 25, pp. 57-83. , doi: 10.1023/A:1022948903451 | |
dc.description | Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L., A truncated Newton method in an augmented Lagrangian framework for nonlinear programming (2010) Comput. Optim. Appl, 45, pp. 311-352. , doi: 10.1007/s10589-008-9216-3 | |
dc.description | Di Pillo, G., Liuzzi, G., Lucidi, S., An exact penalty-Lagrangian approach for large-scale nonlinear programming (2011) Optimization, 60, pp. 223-252. , doi: 10.1080/02331934.2010.505964 | |
dc.description | Fan, J.Y., Yuan, Y.X., On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption (2005) Computing, 34, pp. 23-39. , doi: 10.1007/s00607-004-0083-1 | |
dc.description | Fernández, D., A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems (2011) Math. Program, pp. 199-223. , doi: 10.1007/s10107-011-0493-8 | |
dc.description | Fernández, D., Solodov, M., Stabilized sequential quadratic programming for optimization and a stabilized Newton-Type method for variational problems (2010) Math. Program, 125, pp. 47-73. , doi: 10.1007/s10107-008-0255-4 | |
dc.description | Fletcher, R., (1987) Practical Methods of Optimization, , Academic Press, London | |
dc.description | Fletcher, R., Leyffer, S., Toint, Ph.L., On the global convergence of a filter-SQP algorithm (2002) SIAM J. Optim, 13, pp. 44-59. , doi: 10.1137/S105262340038081X | |
dc.description | Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L., Wächter, A., Global convergence of trust-region SQP-filter algorithms for general nonlinear programming (2002) SIAM J. Optim, 13, pp. 635-659. , doi: 10.1137/S1052623499357258 | |
dc.description | Giannessi, F., (2005) Separation of Sets and Optimality Conditions, , Springer, New York | |
dc.description | Gould, N.I.M., Toint, Ph.L., Nonlinear programming without a penalty function or a filter (2010) Math. Program, 122, pp. 155-196. , doi: 10.1007/s10107-008-0244-7 | |
dc.description | Gratton, S., Mouffe, M., Toint, Ph.L., Stopping rules and backward error analysis for bound-constrained optimization (2011) Numer. Math, 119, pp. 163-187. , doi: 10.1007/s00211-011-0376-1 | |
dc.description | Izmailov, A., Solodov, M., Stabilized SQP revisited (2010) Math. Program, pp. 93-120. , doi: 10.1007/s10107-010-0413-3 | |
dc.description | Liu, X.W., Yuan, Y.X., A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties (2010) Math. Program, 125, pp. 163-193. , doi: 10.1007/s10107-009-0272-y | |
dc.description | Liu, X.W., Yuan, Y.X., A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization (2011) SIAM J. Optim, 21, pp. 545-571. , doi: 10.1137/080739884 | |
dc.description | Luksan, L., Matonoha, C., Vlcek, J., Interior point methods for large-scale nonlinear programming (2003) Optim. Methods Softw, 20, pp. 569-582. , doi: 10.1080/10556780500140508 | |
dc.description | Luksan, L., Matonoha, C., Vlcek, J., Algorithm 896: LSA: Algorithms for large-scale optimization (2009) ACM Trans. Math. Softw, 36, pp. 161-1629. , doi: 10.1145/1527286.1527290 | |
dc.description | Martínez, J.M., Santos, L.T., Some new theoretical results on recursive quadratic programming algorithms (1998) J. Optim. Theory Appl, 97, pp. 435-454. , doi: 10.1023/A:1022686919295 | |
dc.description | Martínez, J.M., Svaiter, B.F., A practical optimality condition without constraint qualifications for nonlinear programming (2003) J. Optim. Theory Appl, 118, pp. 117-133. , doi: 10.1023/A:1024791525441 | |
dc.description | Nocedal, J., Wright, S.J., (1999) Numerical Optimization, , Springer, New York | |
dc.description | Qi, L., Wei, Z., On the constant positive linear dependence condition and its application to SQP methods (2000) SIAM J. Optim, 10, pp. 963-981. , doi: 10.1137/S1052623497326629 | |
dc.description | Schiela, A., Guenther, A., An interior point algorithm with inexact step computation in function space for state constrained optimal control (2011) Numer. Math, 119, pp. 373-407. , doi: 10.1007/s00211-011-0381-4 | |
dc.description | Shen, C., Xue, W., Pu, D., A filter SQP algorithm without a feasibility restoration phase (2009) Comput. Appl. Math, 28, pp. 167-194. , doi: 10.1590/S1807-03022009000200003 | |
dc.description | Shen, C., Leyffer, S., Fletcher, R., Nonmonotone filter method for nonlinear optimization (2012) Comput. Optim. Appl, 52, pp. 583-607. , doi: 10.1007/s10589-011-9430-2 | |
dc.description | Wächter, A., Biegler, L.T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming (2006) Math. Program, 106, pp. 25-57. , doi: 10.1007/s10107-004-0559-y | |
dc.description | Wright, S.J., Superlinear convergence of a stabilized SQP method to a degenerate solution (1998) Comput. Optim. Appl, 11, pp. 253-275. , doi: 10.1023/A:1018665102534 | |
dc.description | Wright, S.J., Modifying SQP for degenerate problems (2002) SIAM J. Optim, 13, pp. 470-497. , doi: 10.1137/S1052623498333731 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Optimization Methods and Software | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | On The Behaviour Of Constrained Optimization Methods When Lagrange Multipliers Do Not Exist | |
dc.type | Artículos de revistas | |