dc.creatorBiagioni H.A.
dc.creatorLinares F.
dc.date2003
dc.date2015-06-30T17:26:39Z
dc.date2015-11-26T15:38:51Z
dc.date2015-06-30T17:26:39Z
dc.date2015-11-26T15:38:51Z
dc.date.accessioned2018-03-28T22:47:22Z
dc.date.available2018-03-28T22:47:22Z
dc.identifier
dc.identifierProceedings Of The American Mathematical Society. , v. 131, n. 10, p. 3113 - 3121, 2003.
dc.identifier29939
dc.identifier10.1090/S0002-9939-03-06898-9
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0141976305&partnerID=40&md5=ac1a3f68c4cd2b503f3cda68d12edde7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101999
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101999
dc.identifier2-s2.0-0141976305
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264003
dc.descriptionWe study the ill-posednees question for the one-dimensional Zakharov system and a generalization of it in one and higher dimensions. Our point of reference is the criticality criteria introduced by Ginibre, Tsutsumi and Velo (1997) to establish local well-posedness.
dc.description131
dc.description10
dc.description3113
dc.description3121
dc.descriptionAdded, H., Added, S., Existence globale de solutions fortes pour les équations de la turbulence de Langmuir em dimension 2 (1984) C. R. Acad. Sci. Paris, 299, pp. 551-554. , MR 86g:35163
dc.descriptionAdded, H., Added, S., Equations of Langmuir turbulence and nonlinear Schrödinger equation: Smoothness and approximation (1988) J. Funct. Anal., 79, pp. 183-210. , MR 89h:35273
dc.descriptionBerestycki, H., Lyons, P.L., Nonlinear scalar field equations (1983) Arch. Rational Mech. Anal., 82, pp. 313-376. , MR 84h:35054a
dc.descriptionMR 84h:35054b
dc.descriptionBiagioni, H.A., Linares, F., Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equation (2001) Trans. Amer. Math. Soc., 353, pp. 3649-3659. , MR2002e:35215
dc.descriptionBirnir, B., Kenig, C.E., Ponce, G., Svanstedt, N., Vega, L., On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations (1996) J. London Math. Soc. (2), 53, pp. 551-559. , MR 97d:35233
dc.descriptionBirnir, B., Ponce, G., Svanstedt, N., The local ill-posedness of the modified KdV equation (1996) Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (4), pp. 529-535. , MR 97e:35152
dc.descriptionBourgain, J., Colliander, J., On well-posedness of the Zakharov system (1996) Int. Math. Res. Not., 11, pp. 515-546. , MR 97h:35206
dc.descriptionColliander, J., Wellposedness for Zakharov systems with generalized nonlinearity (1998) J. Differential Equations, 148 (2), pp. 351-363. , MR 99h:35196
dc.descriptionGinibre, J., Tsutsumi, Y., Velo, G., On the Cauchy problem for the Zakharov system (1997) J. Funct. Anal, 151, pp. 384-436. , MR 2000c:35220
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On the Zakharov and Zakharov-Schulman systems (1995) J. Funct. Anal., 127, pp. 204-234. , MR 96a:35197
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On ill-posedness of some canonical dispersive equations (2001) Duke Math. J., 106, pp. 617-633. , MR 2002c:35265
dc.descriptionOzawa, T., Tsutsumi, Y., Existence and smoothing effect of solutions for the Zakharov equations (1992) RIMS Kyoto Univ., 28, pp. 329-361. , MR 93k:35246
dc.descriptionStrauss, W., Existence of solitary waves in higher dimensions (1977) Comm. Math. Phys., 55, pp. 149-162. , MR 56:12616
dc.descriptionSulem, C., Sulem, P.L., Quelques résultats de régularité pour les équations de la turbulence de Langmuir (1979) C. R. Acad. Sci. Paris, 289, pp. 173-176. , MR 80i:35165
dc.descriptionWu, Y., Orbital stability of solitary waves of Zakharov system (1994) J. Math. Phys., 35, pp. 2413-2422. , MR 95e:35170
dc.descriptionZakharov, V.E., The collapse of Langmuir waves (1972) Sov. Phys. JETP, 35, pp. 908-914
dc.languageen
dc.publisher
dc.relationProceedings of the American Mathematical Society
dc.rightsfechado
dc.sourceScopus
dc.titleIll-posedness For The Zakharov System With Generalized Nonlestearity
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución