Actas de congresos
Maximal Max-tree Simplification
Registro en:
9781479952083
Proceedings - International Conference On Pattern Recognition. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 3132 - 3137, 2014.
10514651
10.1109/ICPR.2014.540
2-s2.0-84919935952
Autor
Souza R.
Rittner L.
Machado R.
Lotufo R.
Institución
Resumen
The Max-Tree is an efficient data structure that represents all connected components resulting from all possible image upper threshold values. Usually, most of its nodes represent irrelevant extrem a, i.e. noise, or small variations of a connected component. This paper proposes the Maximal Max-Tree Simplification (MMS) filter with a normalized threshold criterion (MMS-T) and a Maximally Stable Extremal Regions (MSER) criterion (MMS-MSER) and a methodology to apply them using the Extinction filter We show that after applying our simplification methodology which sets the number of maxima in the image, the number of Max-Tree nodes is at most twice this number. Two applications of the proposed methodology are illustrated.
3132 3137 Breen, E.J., Jones, R., Attribute openings, thinnings, and granulometries (1996) Computer Vision and Image Understanding, 64 (3), pp. 377-389 Carlinet, E., Géraud, T., A fair comparison of many max-tree computation algorithms (extended version of the paper submitted to ismm 2013) (2012) Computing Research Repository (CoRR), abs-1212. 1819 Forssen, P., Lowe, D., Shape descriptors for maximally stable extremal regions (2007) IEEE 11th International Conference on Computer Vision (ICCV), pp. 1-8 Jones, R., Connected filtering and segmentation using component trees (1999) Comput. Vis. Image Underst., 75 (3), pp. 215-228 Matas, J., Chum, O., Urban, M., Pajdla, T., Robust wide-baseline stereo from maximally stable extremal regions (2002) British Machine Vision Conference, pp. 384-393 Merino-Gracia, C., Lenc, K., Mirmehdi, M., A head-mounted device for recognizing text in natural scenes (2012) Proceedings of the 4th International Conference on Camera-Based Document Analysis and Recognition, CBDAR'11, pp. 29-41. , Berlin, Heidelberg. Springer-Verlag Najman, L., Couprie, M., Quasi-linear algorithm for the component tree (2004) SPIE Vision Geometry XII, pp. 98-107 Najman, L., Couprie, M., Building the component tree in quasi-linear time (2006) Trans. Img. Proc., 15 (11), pp. 3531-3539. , Nov Salembier, P., Oliveras, A., Garrido, L., Antiextensive connected operators for image and sequence processing (1998) IEEE Transactions on Image Processing, 7 (4), pp. 555-570 Salembier, P., Wilkinson, M., Connected operators (2009) IEEE Signal Processing Magazine, 26 (6), pp. 136-157 Serra, J., Salembier, P., (1993) Connected Operators and Pyramids, pp. 65-76 Vachier, C., Extinction value: A new measurement of persistence (1995) IEEEWorkshop on Nonlinear Signal and Image Processing, 1, pp. 254-257 Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., Image quality assessment: From error visibility to structural similarity (2004) IEEE Tansactions on Image Processing, 13 (4), pp. 600-612 Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F., Volumetric attribute filtering and interactive visualization using the max-tree representation (2007) IEEE Transactions on Image Processing, 16 (12), pp. 2943-2952