dc.creatorConti J.C.
dc.creatorFarial F.A.
dc.creatorAlmeida J.
dc.creatorAlberton B.
dc.creatorMorellato L.P.C.
dc.creatorCamolesi L.
dc.creatorDa Torres R.S.
dc.date2014
dc.date2015-06-25T17:50:57Z
dc.date2015-11-26T15:38:38Z
dc.date2015-06-25T17:50:57Z
dc.date2015-11-26T15:38:38Z
dc.date.accessioned2018-03-28T22:47:08Z
dc.date.available2018-03-28T22:47:08Z
dc.identifier9781479952083
dc.identifierProceedings - International Conference On Pattern Recognition. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 3126 - 3131, 2014.
dc.identifier10514651
dc.identifier10.1109/ICPR.2014.539
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919935087&partnerID=40&md5=8071cdd5fd92d90b2992805588015317
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85946
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85946
dc.identifier2-s2.0-84919935087
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263951
dc.descriptionPhenology is the study of periodic natural phenomena and their relationship to climate. Usually, phenology studies consider the identification of patterns on temporal data. In those studies, several phenological change patterns are often encoded in time series for analysis and knowledge extraction. In this paper, we evaluate the effectiveness of several time series similarity functions in the task of classifying time series related to phonological phenomena characterized by near-surface vegetation indices extracted from images. In addition, we performed a correlation analysis to identify potential candidates for combination.
dc.description
dc.description
dc.description3126
dc.description3131
dc.descriptionSchwartz, M.D., (2003) Phenology: An Integrative Environmental Science, , Academic Publishers
dc.descriptionRichardson, A.D., Jenkins, J.P., Braswell, B.H., Hollinger, D.Y., Ollinger, S.V., Smith, M.L., Use of digital webcam images to track spring greep-up in a deciduous broadleaf forest (2007) Oecologia, 152, pp. 323-334
dc.descriptionAhrends, H., Etzold, S., Kutsch, W., Stoeckli, R., Bruegger, R., Jeanneret, F., Wanner, H., Eugster, W., Tree phenology and carbon dioxide fluxes: Use of digital photography for process-based interpretation at the ecosystem scale (2009) Climate Research, 39, pp. 261-274
dc.descriptionRichardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecological Applications, 19, pp. 1417-1428
dc.descriptionAlberton, B., Almeida, J., Henneken, R., Da S Torres, R., Menzel, A., Morellato, L.P.C., Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation (2014) Ecological Informatics, 19, pp. 62-70
dc.descriptionTorres, R.S., Hasegawa, M., Tabbone, S., Almeida, J., Santos, J.A., Alberton, B., Morellato, L.P.C., Shape-based time series analysis for remote phenology studies (2013) IEEE International Geoscience and Remote Sensing Symposium, pp. 3598-3601
dc.descriptionAlmeida, J., Santos, J.A., Alberton, B., Morellato, L.P.C., Torres, R.S., Visual rhythm-based time series analysis for phenology studies (2013) IEEE International Conference on Image Processing, pp. 4412-4416
dc.descriptionAlmeida, J., Santos, J.A., Alberton, B., Morellato, L.P.C., Torres, R.S., Plant species identification with phenological visual rhythms (2013) IEEE International Conference on EScience, pp. 148-154
dc.descriptionCheng, H.-D., Jiang, X., Sun, Y., Wang, J., Color image segmentation: Advances and prospects (2001) Pattern Recognition, 34 (12), pp. 2259-2281
dc.descriptionYi, B.-K., Faloutsos, C., Fast time sequence indexing for arbitrary lp norms (2000) International Conference on Very Large Data Bases, pp. 385-394
dc.descriptionFaloutsos, C., Ranganathan, M., Manolopoulos, Y., Fast subsequence matching in time-series databases (1994) SIGMOD Record, 23 (2), pp. 419-429. , May
dc.descriptionBerndt, D.J., Clifford, J., Using dynamic time warping to find patterns in time series (1994) KDD Workshop, pp. 359-370
dc.descriptionChen, L., Zsu, M.T., Robust and fast similarity search for moving object trajectories (2005) ACM SIGMOD International Conference on Management of Data, pp. 491-502
dc.descriptionChen, L., Ng, R., (2004) On the Marriage of Lp-norms and Edit Distance, pp. 792-803
dc.descriptionVlachos, M., Discovering similar multidimensional trajectories (2002) International Conference on Data Engineering, pp. 673-684
dc.descriptionMartin, J., Crowley, J.L., Experimental comparison of correlation techniques (1995) International Conference on Intelligent Autonomous Systems
dc.descriptionAlmeida, J., Dos Santos, J.A., Alberton, B., Torres, R.S., Morellato, L.P.C., Remote phenology: Applying machine learning to detect phenological patterns in a cerrado savanna (2012) IEEE International Conference on EScience, pp. 1-8
dc.descriptionAlmeida, J., Santos, J.A., Alberton, B., Torres, R.S., Morellato, L.P.C., Applying machine learning based on multiscale classifiers to detect remote phenology patterns in cerrado savanna trees (2013) Ecological Informatics
dc.descriptionGuigues, L., Cocquerez, J., Le Men, H., Scale-sets image analysis (2006) International Journal of Computer Vision, 68, pp. 289-317
dc.descriptionKuncheva, L.I., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy (2003) Machine Learning
dc.descriptionFaria, F.A., Dos Santos, J.A., Rocha, A., Da S Torres, R., A framework for selection and fusion of pattern classifiers in multimedia recognition (2014) Pattern Recognition Letters, 39 (0), pp. 52-64
dc.descriptionAndrade, F.S.P., Almeida, J., Pedrini, H., Torres, R.S., Fusion of local and global descriptors for content-based image and video retrieval (2012) Iberoamerican Congress on Pattern Recognition, pp. 845-853
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationProceedings - International Conference on Pattern Recognition
dc.rightsfechado
dc.sourceScopus
dc.titleEvaluation Of Time Series Distance Functions In The Task Of Detecting Remote Phenology Patterns
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución