dc.creator | Ohashi A. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:37:23Z | |
dc.date | 2015-11-26T15:38:20Z | |
dc.date | 2015-06-26T13:37:23Z | |
dc.date | 2015-11-26T15:38:20Z | |
dc.date.accessioned | 2018-03-28T22:46:50Z | |
dc.date.available | 2018-03-28T22:46:50Z | |
dc.identifier | | |
dc.identifier | Annals Of Applied Probability. , v. 19, n. 4, p. 1553 - 1580, 2009. | |
dc.identifier | 10505164 | |
dc.identifier | 10.1214/08-AAP586 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-70049096845&partnerID=40&md5=aee4f1c8341aa98c002d87f9eeb4c315 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/92761 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/92761 | |
dc.identifier | 2-s2.0-70049096845 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263878 | |
dc.description | In this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the fractional HJM dynamics. We give a fairly complete characterization of finite-dimensional invariant manifolds for HJM models with fractional Brownian motion by means of Nagumo-type conditions. As an application, we investigate consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White models. It turns out that similar to the Brownian case such a family does not go well with the fractional HJM dynamics with deterministic volatility. In fact, there is no nontrivial fractional interest rate model consistent with the Nelson-Siegel family. © Institute of Mathematical Statistics, 2009. | |
dc.description | 19 | |
dc.description | 4 | |
dc.description | 1553 | |
dc.description | 1580 | |
dc.description | Aida, S., Kusuoka, S., Stroock, D., On the support of wiener functionals. In asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990) (1993) Pitman Res. Notes Math. Ser., 294, pp. 3-34. , Longman, Harlow. MR1354161 | |
dc.description | Alos, E., Nualart, D., Stochastic integration with respect to the fractional Brownian motion (2003) STOCHASTICS AND STOCHASTICS REPORTS, 75 (3), pp. 129-152. , DOI 10.1080/1045112031000078917 | |
dc.description | Björk, T., Christensen, B.J., Interest rate dynamics and consistent forward rate curves (1999) Math. Finance, 9, pp. 323-348. , MR1849252 | |
dc.description | Björk, T., Di Masi, G., Kabanov, W., Runggaldier, Y., Towards a general theory of bond markets (1997) Finance Stoch., 1, pp. 141-174 | |
dc.description | Björk, T., Hult, H., A note on Wick products and the fractional Black-Scholes model (2005) Finance Stoch., 9, pp. 197-209. , MR2211124 | |
dc.description | Carmona, R., Tehranchi, M., A characterization of hedging portfolios for interest rate contingent claims (2004) Ann. Appl. Probab., 14, pp. 1267-1294. , MR2071423 | |
dc.description | Da Prato, G., Zabczyk, J., Stochastic equations in infinite dimensions (1992) Encyclopedia of Mathematics and Its Applications, 44. , Cambridge Univ. Press, Cambridge. MR1207136 | |
dc.description | De Donno, M., Pratelli, M., A theory of stochastic integration for bond markets (2007) Ann. Appl. Probab., 15, pp. 2773-2791 | |
dc.description | Duncan, T.E., Maslowski, B., Pasik-Duncan, B., Fractional Brownian motionand stochastic equations in Hilbert spaces (2002) Stoch. Dyn., 2, pp. 225-250. , MR1912142 | |
dc.description | Filipović, D., Consistency problems for heath-jarrow-morton interest rate models (2001) Lecture Notes in Mathematics, 1760. , Springer, Berlin. MR1828523 | |
dc.description | Filipović, D., Teichmann, J., Existence of invariant manifolds for stochastic equations in infinite dimension (2003) J. Funct. Anal., 197, pp. 398-432. , MR1960419 | |
dc.description | Gapeev, P.V., On arbitrage and Markovian short rates in fractional bond markets (2004) Statist. Probab. Lett., 70, pp. 211-222. , MR2108087 | |
dc.description | Gripenberg, G., Norros, I., On the prediction of fractional Brownian motion (1996) J. Appl. Probab., 33, pp. 400-410. , MR1385349 | |
dc.description | Guasoni, P., No arbitrage under transaction costs, with fractional Brownian motion and beyond (2006) Math. Finance, 16, pp. 569-582. , MR2239592 | |
dc.description | Guasoni, P., Rásonyi, M., Schachermayer, W., The fundamental theorem of asset pricing for continuous process under small transaction costs (2008) Annals of Finance., , To appear | |
dc.description | Hairer, M., Ohashi, A., Ergodic theory for SDEs with extrinsic memory (2007) Ann. Probab., 35, pp. 1950-1977. , MR2349580 | |
dc.description | Heath, D., Jarrow, R., Morton, A., Bond pricing and the term structure of interest rates: A new metodology for contingent claims valuation (1992) Econometrica, 60, pp. 77-105 | |
dc.description | Hu, Y., Integral transformations and anticipative calculus for fractional Brownian motions (2005) Mem. Amer. Math. Soc., 175, p. 127. , MR2130224 | |
dc.description | Jashimiak, W., A note on invariance for semilinear differential equations (1997) Bull. Polish Acad. Sci. Math., 45, pp. 181-185. , MR1466843 | |
dc.description | Krvavich, Y.V., Mishura, Y.S., Differentiability of fractional integrals whose kernels contain fractional Brownian motions (2001) Ukraïn. Mat. Zh., 53, pp. 35-47. , MR1834637 | |
dc.description | Mccarthy, J., Disario, R., Saraoglu, H., Li, H., Tests of long-range dependence of interest rates using wavelets (2004) Quarterly R. Economics. Finance, 44, pp. 180-189 | |
dc.description | Nakayama, T., Viability theorem for SPDE's including HJM framework (2004) J. Math. Sci. Univ. Tokyo, 11, pp. 313-324. , MR2097528 | |
dc.description | Norros, I., Valkeila, E., Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions (1999) Bernoulli, 5, pp. 571-587. , MR1704556 | |
dc.description | Russo, F., Vallois, P., Stochastic calculus with respect to continuous finite quadratic variation processes (2000) Stochastics Rep., 70, pp. 1-40. , MR1785063 | |
dc.description | Samko, S.G., Kilbas, A.A., Marichev, O.I., (1993) Fractional Integrals and Derivatives, , Theory and Applications. Gordon and Breach, Yverdon. MR1347689 | |
dc.description | Samorodnitsky, G., Taqqu, M.S., (1994) Stable Non-gaussian Random Processes, , Stochastic Models with Infinite Variance. Chapman & Hall, New York. MR1280932 | |
dc.description | Sottinen, T., Valkeila, E., (2001) Fractional Brownian Motion as a Model in Finance, , Preprint 302, Dept. Mathematics, Univ. Helsinki | |
dc.language | en | |
dc.publisher | | |
dc.relation | Annals of Applied Probability | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Fractional Term Structure Models: No-arbitrage And Consistency | |
dc.type | Artículos de revistas | |