dc.creatorOhashi A.
dc.date2009
dc.date2015-06-26T13:37:23Z
dc.date2015-11-26T15:38:20Z
dc.date2015-06-26T13:37:23Z
dc.date2015-11-26T15:38:20Z
dc.date.accessioned2018-03-28T22:46:50Z
dc.date.available2018-03-28T22:46:50Z
dc.identifier
dc.identifierAnnals Of Applied Probability. , v. 19, n. 4, p. 1553 - 1580, 2009.
dc.identifier10505164
dc.identifier10.1214/08-AAP586
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70049096845&partnerID=40&md5=aee4f1c8341aa98c002d87f9eeb4c315
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92761
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92761
dc.identifier2-s2.0-70049096845
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263878
dc.descriptionIn this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the fractional HJM dynamics. We give a fairly complete characterization of finite-dimensional invariant manifolds for HJM models with fractional Brownian motion by means of Nagumo-type conditions. As an application, we investigate consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White models. It turns out that similar to the Brownian case such a family does not go well with the fractional HJM dynamics with deterministic volatility. In fact, there is no nontrivial fractional interest rate model consistent with the Nelson-Siegel family. © Institute of Mathematical Statistics, 2009.
dc.description19
dc.description4
dc.description1553
dc.description1580
dc.descriptionAida, S., Kusuoka, S., Stroock, D., On the support of wiener functionals. In asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990) (1993) Pitman Res. Notes Math. Ser., 294, pp. 3-34. , Longman, Harlow. MR1354161
dc.descriptionAlos, E., Nualart, D., Stochastic integration with respect to the fractional Brownian motion (2003) STOCHASTICS AND STOCHASTICS REPORTS, 75 (3), pp. 129-152. , DOI 10.1080/1045112031000078917
dc.descriptionBjörk, T., Christensen, B.J., Interest rate dynamics and consistent forward rate curves (1999) Math. Finance, 9, pp. 323-348. , MR1849252
dc.descriptionBjörk, T., Di Masi, G., Kabanov, W., Runggaldier, Y., Towards a general theory of bond markets (1997) Finance Stoch., 1, pp. 141-174
dc.descriptionBjörk, T., Hult, H., A note on Wick products and the fractional Black-Scholes model (2005) Finance Stoch., 9, pp. 197-209. , MR2211124
dc.descriptionCarmona, R., Tehranchi, M., A characterization of hedging portfolios for interest rate contingent claims (2004) Ann. Appl. Probab., 14, pp. 1267-1294. , MR2071423
dc.descriptionDa Prato, G., Zabczyk, J., Stochastic equations in infinite dimensions (1992) Encyclopedia of Mathematics and Its Applications, 44. , Cambridge Univ. Press, Cambridge. MR1207136
dc.descriptionDe Donno, M., Pratelli, M., A theory of stochastic integration for bond markets (2007) Ann. Appl. Probab., 15, pp. 2773-2791
dc.descriptionDuncan, T.E., Maslowski, B., Pasik-Duncan, B., Fractional Brownian motionand stochastic equations in Hilbert spaces (2002) Stoch. Dyn., 2, pp. 225-250. , MR1912142
dc.descriptionFilipović, D., Consistency problems for heath-jarrow-morton interest rate models (2001) Lecture Notes in Mathematics, 1760. , Springer, Berlin. MR1828523
dc.descriptionFilipović, D., Teichmann, J., Existence of invariant manifolds for stochastic equations in infinite dimension (2003) J. Funct. Anal., 197, pp. 398-432. , MR1960419
dc.descriptionGapeev, P.V., On arbitrage and Markovian short rates in fractional bond markets (2004) Statist. Probab. Lett., 70, pp. 211-222. , MR2108087
dc.descriptionGripenberg, G., Norros, I., On the prediction of fractional Brownian motion (1996) J. Appl. Probab., 33, pp. 400-410. , MR1385349
dc.descriptionGuasoni, P., No arbitrage under transaction costs, with fractional Brownian motion and beyond (2006) Math. Finance, 16, pp. 569-582. , MR2239592
dc.descriptionGuasoni, P., Rásonyi, M., Schachermayer, W., The fundamental theorem of asset pricing for continuous process under small transaction costs (2008) Annals of Finance., , To appear
dc.descriptionHairer, M., Ohashi, A., Ergodic theory for SDEs with extrinsic memory (2007) Ann. Probab., 35, pp. 1950-1977. , MR2349580
dc.descriptionHeath, D., Jarrow, R., Morton, A., Bond pricing and the term structure of interest rates: A new metodology for contingent claims valuation (1992) Econometrica, 60, pp. 77-105
dc.descriptionHu, Y., Integral transformations and anticipative calculus for fractional Brownian motions (2005) Mem. Amer. Math. Soc., 175, p. 127. , MR2130224
dc.descriptionJashimiak, W., A note on invariance for semilinear differential equations (1997) Bull. Polish Acad. Sci. Math., 45, pp. 181-185. , MR1466843
dc.descriptionKrvavich, Y.V., Mishura, Y.S., Differentiability of fractional integrals whose kernels contain fractional Brownian motions (2001) Ukraïn. Mat. Zh., 53, pp. 35-47. , MR1834637
dc.descriptionMccarthy, J., Disario, R., Saraoglu, H., Li, H., Tests of long-range dependence of interest rates using wavelets (2004) Quarterly R. Economics. Finance, 44, pp. 180-189
dc.descriptionNakayama, T., Viability theorem for SPDE's including HJM framework (2004) J. Math. Sci. Univ. Tokyo, 11, pp. 313-324. , MR2097528
dc.descriptionNorros, I., Valkeila, E., Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions (1999) Bernoulli, 5, pp. 571-587. , MR1704556
dc.descriptionRusso, F., Vallois, P., Stochastic calculus with respect to continuous finite quadratic variation processes (2000) Stochastics Rep., 70, pp. 1-40. , MR1785063
dc.descriptionSamko, S.G., Kilbas, A.A., Marichev, O.I., (1993) Fractional Integrals and Derivatives, , Theory and Applications. Gordon and Breach, Yverdon. MR1347689
dc.descriptionSamorodnitsky, G., Taqqu, M.S., (1994) Stable Non-gaussian Random Processes, , Stochastic Models with Infinite Variance. Chapman & Hall, New York. MR1280932
dc.descriptionSottinen, T., Valkeila, E., (2001) Fractional Brownian Motion as a Model in Finance, , Preprint 302, Dept. Mathematics, Univ. Helsinki
dc.languageen
dc.publisher
dc.relationAnnals of Applied Probability
dc.rightsaberto
dc.sourceScopus
dc.titleFractional Term Structure Models: No-arbitrage And Consistency
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución