dc.creatorFlores M.Z.S.
dc.creatorAutreto P.A.S.
dc.creatorLegoas S.B.
dc.creatorGalvao D.S.
dc.date2009
dc.date2015-06-26T13:37:16Z
dc.date2015-11-26T15:38:04Z
dc.date2015-06-26T13:37:16Z
dc.date2015-11-26T15:38:04Z
dc.date.accessioned2018-03-28T22:46:32Z
dc.date.available2018-03-28T22:46:32Z
dc.identifier
dc.identifierNanotechnology. , v. 20, n. 46, p. - , 2009.
dc.identifier9574484
dc.identifier10.1088/0957-4484/20/46/465704
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70350637355&partnerID=40&md5=1790c87241847392f00023a77d92522d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92722
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92722
dc.identifier2-s2.0-70350637355
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263805
dc.descriptionGraphane is a two-dimensional system consisting of a single layer of fully saturated (sp3 hybridization) carbon atoms. In an ideal graphane structure C-H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using ab initio and reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms' up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process leading to membrane shrinkage and extensive membrane corrugations. These results also suggest that large domains of perfect graphane-like structures are unlikely to be formed, as H frustrated domains are always present. © IOP Publishing Ltd.
dc.description20
dc.description46
dc.description
dc.description
dc.descriptionPeng, H., (2008) Phys. Rev. Lett., 101, p. 145501
dc.descriptionNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., (2004) Science, 306, p. 666
dc.descriptionGeim, A.K., Novoselov, K.S., (2007) Nat. Mater., 6, p. 183
dc.descriptionCastro Neto, A.H., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K., (2009) Rev. Mod. Phys., 81, p. 109
dc.descriptionSofo, J.O., Chaudhari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401
dc.descriptionBaughman, R.H., Eckhardt, H., Kertesz, M., (1987) J. Chem. Phys., 87, p. 6687
dc.descriptionColuci, V.R., Braga, S.F., Legoas, S.B., Galvao, D.S., Baughman, R.H., (2003) Phys. Rev. B, 68, p. 035430
dc.descriptionBaughman, R.H., Galvao, D.S., Cui, C., Tomanek, D., (1993) Chem. Phys. Lett., 204, p. 8
dc.descriptionLueking, D., Gutierrez, H.R., Fonseca, D.A., Narayanan, D.L., Essendelft, D.V., Jain, P., Clifford, C.E.B., (2006) J. Am. Chem. Soc., 128, p. 7758
dc.descriptionRay, N.R., Srivastava, A.K., Grotzschel, R., (2008) In Search of Graphane-a Two-dimensional Hydrocarbon, , arXiv:0802.3998v1
dc.descriptionElias, D.C., (2009) Science, 323, p. 610. , (arXiv:0810.4706v1)
dc.descriptionSavchenko, A., (2009) Science, 323, p. 589
dc.descriptionBoukhvalov, D.W., Katsnelson, M.I., Lichtenstein, A.I., (2008) Phys. Rev. B, 77, p. 035427
dc.descriptionCasolo, S., Løvvik, O.M., Martinazzo, R., Tantardini, G.F., (2009) J. Chem. Phys., 130, p. 054704
dc.descriptionXu, Z., Xue, K., (2009) Strain Engineering on Graphane Towards Tunable and Reversible Hydrogenation, , arXiv:0904.2938v1
dc.descriptionLebegue, S., Klintenberg, M., Eriksson, O., Katsnelson, M.I., (2009) Phys. Rev. B, 79, p. 245117
dc.descriptionSahin, H., Ataca, C., Ciraci, S., (2009) Magnetization of Graphane by Dehydrogenation, , arXiv:0907.0549v1
dc.descriptionGharenkhanlou, B., Khorasani, S., (2009) Current-voltage Characteristics of Graphane P-n Junctions, , arXiv:0905.2812v2
dc.descriptionDora, B., Ziegler, K., (2009) Gaps and Tails in Graphene and Graphane, , arXiv:0905.2766v1
dc.descriptionLu, N., Li, Z., Yang, J., (2009) Chemical Functionalization on Planar Polysilane and Graphane, , arXiv:0904.4540v1
dc.descriptionZhou, J., Wang, Q., Sun, Q., Chen, X.S., Kawazoe, Y., Jena, P., (2009) Nano Lett. ASAP, 9, p. 2565
dc.descriptionDelley, B., (1990) J. Chem. Phys., 92, p. 508
dc.descriptionDelley, B., (2000) J. Chem. Phys., 113, p. 7756. , http://www.accelrys.com, DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suites
dc.descriptionPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
dc.descriptionMurnaghan, F.D., (1944) Proc. Natl Acad. Sci., 30, p. 244
dc.descriptionVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., (2001) J. Phys. Chem. A, 105, p. 9396
dc.descriptionVan Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515
dc.descriptionChenoweth, K., Van Duin, A.C.T., Goddard, W.A., (2008) J. Phys. Chem. A, 112, p. 1040
dc.descriptionAllinger, N.L., Yuh, Y.H., Lii, J.H., (1989) J. Am. Chem. Soc., 111, p. 8551
dc.descriptionBerendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., (1984) J. Chem. Phys., 81, p. 3684
dc.descriptionLegoas, S.B., Autreto, P.A.S., Flores, M.Z.S., Galvao, D.S., (2009) Graphene to Graphane: The Role of H Frustration in Lattice Contraction, , arXiv:0903.0278v1
dc.descriptionToulouse, G., (1977) Commun. Phys., 2, p. 115
dc.languageen
dc.publisher
dc.relationNanotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleGraphene To Graphane: A Theoretical Study
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución