dc.creatorOrtega E.M.M.
dc.creatorCancho V.G.
dc.creatorLachos V.H.
dc.date2009
dc.date2015-06-26T13:37:19Z
dc.date2015-11-26T15:38:04Z
dc.date2015-06-26T13:37:19Z
dc.date2015-11-26T15:38:04Z
dc.date.accessioned2018-03-28T22:46:31Z
dc.date.available2018-03-28T22:46:31Z
dc.identifier
dc.identifierSankhya: The Indian Journal Of Statistics. , v. 71, n. 1 SERIES B, p. 1 - 29, 2009.
dc.identifier9727671
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-76949105530&partnerID=40&md5=bf1adb7a7d0d47dfaa97c6ffeea75ac9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92739
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92739
dc.identifier2-s2.0-76949105530
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263802
dc.descriptionIn a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse may be indicated by a relatively high number of individuals with large censored survival times. In this paper, the generalized log-gamma model is modifed for the possible presence of long-term survivors in the data. The models attempt to simultaneously estimate the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. The generalized log-gamma mixture model is exible enough to include many commonly used failure time distributions as special cases. We consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the numerically matrices for assessing local Influence on the parameter estimates under di erent perturbation schemes and we also present some ways to perform global Influence. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. © 2009, Indian Statistical Institute.
dc.description71
dc.description1 SERIES B
dc.description1
dc.description29
dc.descriptionBanerjee, S., Carlin, B.P., Parametric spatial cure rate models for interval-censored time-to-relapse data (2004) Biometrics, 60, pp. 268-275
dc.descriptionBerkson, J., Gage, R.P., Survival curve for cancer patients following treatment (1952) J. Amer. Statist. Assoc, 88, pp. 1412-1418
dc.descriptionBoag, J., Maximum likelihood estimates of the proportion of patients cured by cancer therapy (1949) J. Roy. Statist. Soc., Series B, 11, pp. 15-44
dc.descriptionCarrasco, J.M.F., Ortega, E.M.M., Paula, G.A., Log-modi ed Weibull regression models with censored data: Sensitivity and residual analysis (2008) Computational Statistics and Data Analysis, 52, pp. 4021-4029
dc.descriptionCook, R.D., Assessment of local Influence (with discussion) (1986) J. Roy. Statist. Soc, 48, pp. 133-169
dc.descriptionCook, R.D., Weisberg, S., (1982) Residuals and Influence In Regression, , New York: Chapman and Hill
dc.descriptionDiaz-Garca, J.A., Galea, M., Leiva-Sánchez, V., Influence diagnostics for elliptical multivariate linear regression models (2004) Communications In Statistics - Theory and Methods, 32, pp. 625-641
dc.descriptionDoornik, J., (2001) Ox: An Object-oriented Matrix Programming Language, , International Thomson Business Press
dc.descriptionEscobar, L.A., Meeker, W.Q., Assessing Influence in regression analysis with censored data (1992) Biometrics, 48, pp. 507-528
dc.descriptionFarewell, V.T., The use of mixture models for tha analysis of survival data with long-term survivors (1982) Biometrics, 38, pp. 1041-1046
dc.descriptionGalea, M., Riquelme, M., Paula, G.A., Diagnostics methods in elliptical linear regression models (2002) Brazilian Journal of Probability and Statistics, 14, pp. 167-184
dc.descriptionGomes, O., Combes, C., Dussauchoy, A., Parameter estimation of the generalized gamma distribution (2008) Mathematics and Computers In Simulation, 79, pp. 955-963
dc.descriptionIbrahim, J.G., Chen, M.H., Sinha, D., (2001) Bayesian Survival Analysis, , Springer-Verlag: New York
dc.descriptionKalbfleisch, J.D., Prentice, R.L., (1980) The Statistical Analysis of Failure Time Data, , New York: John Wiley & Sons
dc.descriptionLawless, J.F., (2003) Statistical Models and Methods For Lifetime Data, , Wiley: New York
dc.descriptionLesaffre, E., Verbeke, G., Local Influence in linear mixed models (1998) Biometrics, 54, pp. 570-582
dc.descriptionLi, C.-S., Taylor, J.M.G., Sy, J.P., Identifiability of cure models (2001) Statist. Probab. Lett, 54, pp. 389-395
dc.descriptionLi, Y., Tiwari, R.C., Guha, S., Mixture cure survival models with dependent censoring (2005) Harvard University Biostatistics Working Paper Series, 41, pp. 211-224
dc.descriptionLipsitz, S.R., Laird, N.M., Harrington, D.P., Using the Jackknife to estimate the variance of regression estimators from repeated measures studies (1990) Communications In Statistics: Theory Methods, 19, pp. 821-845
dc.descriptionLiu, S.Z., On local Influence for elliptical linear models (2000) Statist. Papers, 26, pp. 1-40
dc.descriptionLongini, I.M., Halloran, M.E., A frailty mixture model for estimating vaccine e cacy (1996) Appl. Statist, 45, pp. 165-173
dc.descriptionMaller, R., Zhou, X., (1996) Survival Analysis With Long-term Survivors, , New York:Wiley
dc.descriptionManly, B.F.J., (1997) Randomization, Bootstrap and Monte Carlo Methods In Biology, , 2nd Edition. Chapman and Hall: London
dc.descriptionMizoi, M.F., Bolfarine, H., Pedroso-De-Lima, A.C., Cure Rate Model with Measurement Error (2007) Communications In Statistics Simulation and Computation, 36, pp. 185-196
dc.descriptionOrtega, E.M.M., Paula, G.A., Bolfarine, H., Deviance Residuals in Generalized Log-Gamma Regression Models with Censored Observations (2008) J. Statistical Computation and Simulation, 78, pp. 747-764
dc.descriptionOrtega, E.M.M., Cancho, V.G., Bolfarine, H., Influence diagnostics in exponentiated-Weibull regression models with censored data (2006) Statistics and Operations Research Transactions, 30, pp. 171-192
dc.descriptionOrtega, E.M.M., Bolfarine, H., Paula, G.A., Influence diagnostics in generalized log-gamma regression models (2003) Computational Statistics and Data Analysis, 42, pp. 165-186
dc.descriptionOrtega, E.M.M., (2001) Influence Analysis and Residual In Generalized Log-gamma Regression Models, , Doctoral Thesis, Department of Statistics, University of São Paulo, Brazil (in Portuguese)
dc.descriptionPaula, G.A., Assessing local Influence in restricted regressions models (1993) Computational Statistics and Data Analysis, 16, pp. 63-79
dc.descriptionPeng, Y., Dear, K., A nonparametric mixture model for cure rate estimation (2000) Biometrics, 56, pp. 237-243
dc.descriptionPettitt, A.N., Bin Daud, I., Case-weight measures of Influence for proportional hazards regression (1989) Applied Statistics, 38, pp. 51-67
dc.descriptionPrice, D.L., Manatunga, A.K., Modelling survival data with a cured fraction using frailty models (2001) Statistics In Medicine, 20, pp. 1515-1527
dc.descriptionSilva, G.O., Ortega, E.M.M., Cancho, V.G., Barreto, M.L., Log- Burr XII Regression Models with Censored Data (2008) Computational Statistics and Data Analysis, 52, pp. 3820-3842
dc.descriptionStacy, E.W., A generalization of the gamma distribution (1962) Ann. Math. Stat, 33, pp. 1187-1192
dc.descriptionSy, J.P., Taylor, M.M.G., Estimation in a proportional hazards cure model (2000) Biometrics, 56, pp. 227-336
dc.descriptionWang, P., Puterman, M.L., Cockburn, I., Le, N., Mixed Poisson regression models with covariate dependent rates (1996) Biometrics, 52, pp. 381-400
dc.descriptionYu, B., Peng, Y., Mixture cure models for multivariate survival data (2008) Computational Statistics and Data Analysis, 52, pp. 1524-1532
dc.descriptionZen, D., Yin, G., Ibrahim, G.I., Semiparametric Transformation Models for Survival Data with a Cure Fraction data (2006) J. Amer. Statist. Assoc, 101, pp. 670-684
dc.languageen
dc.publisher
dc.relationSankhya: The Indian Journal of Statistics
dc.rightsfechado
dc.sourceScopus
dc.titleA Generalized Log-gamma Mixture Model For Cure Rate: Estimation And Sensitivity Analysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución