dc.creator | Ortega E.M.M. | |
dc.creator | Cancho V.G. | |
dc.creator | Lachos V.H. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:37:19Z | |
dc.date | 2015-11-26T15:38:04Z | |
dc.date | 2015-06-26T13:37:19Z | |
dc.date | 2015-11-26T15:38:04Z | |
dc.date.accessioned | 2018-03-28T22:46:31Z | |
dc.date.available | 2018-03-28T22:46:31Z | |
dc.identifier | | |
dc.identifier | Sankhya: The Indian Journal Of Statistics. , v. 71, n. 1 SERIES B, p. 1 - 29, 2009. | |
dc.identifier | 9727671 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-76949105530&partnerID=40&md5=bf1adb7a7d0d47dfaa97c6ffeea75ac9 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/92739 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/92739 | |
dc.identifier | 2-s2.0-76949105530 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263802 | |
dc.description | In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse may be indicated by a relatively high number of individuals with large censored survival times. In this paper, the generalized log-gamma model is modifed for the possible presence of long-term survivors in the data. The models attempt to simultaneously estimate the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. The generalized log-gamma mixture model is exible enough to include many commonly used failure time distributions as special cases. We consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the numerically matrices for assessing local Influence on the parameter estimates under di erent perturbation schemes and we also present some ways to perform global Influence. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. © 2009, Indian Statistical Institute. | |
dc.description | 71 | |
dc.description | 1 SERIES B | |
dc.description | 1 | |
dc.description | 29 | |
dc.description | Banerjee, S., Carlin, B.P., Parametric spatial cure rate models for interval-censored time-to-relapse data (2004) Biometrics, 60, pp. 268-275 | |
dc.description | Berkson, J., Gage, R.P., Survival curve for cancer patients following treatment (1952) J. Amer. Statist. Assoc, 88, pp. 1412-1418 | |
dc.description | Boag, J., Maximum likelihood estimates of the proportion of patients cured by cancer therapy (1949) J. Roy. Statist. Soc., Series B, 11, pp. 15-44 | |
dc.description | Carrasco, J.M.F., Ortega, E.M.M., Paula, G.A., Log-modi ed Weibull regression models with censored data: Sensitivity and residual analysis (2008) Computational Statistics and Data Analysis, 52, pp. 4021-4029 | |
dc.description | Cook, R.D., Assessment of local Influence (with discussion) (1986) J. Roy. Statist. Soc, 48, pp. 133-169 | |
dc.description | Cook, R.D., Weisberg, S., (1982) Residuals and Influence In Regression, , New York: Chapman and Hill | |
dc.description | Diaz-Garca, J.A., Galea, M., Leiva-Sánchez, V., Influence diagnostics for elliptical multivariate linear regression models (2004) Communications In Statistics - Theory and Methods, 32, pp. 625-641 | |
dc.description | Doornik, J., (2001) Ox: An Object-oriented Matrix Programming Language, , International Thomson Business Press | |
dc.description | Escobar, L.A., Meeker, W.Q., Assessing Influence in regression analysis with censored data (1992) Biometrics, 48, pp. 507-528 | |
dc.description | Farewell, V.T., The use of mixture models for tha analysis of survival data with long-term survivors (1982) Biometrics, 38, pp. 1041-1046 | |
dc.description | Galea, M., Riquelme, M., Paula, G.A., Diagnostics methods in elliptical linear regression models (2002) Brazilian Journal of Probability and Statistics, 14, pp. 167-184 | |
dc.description | Gomes, O., Combes, C., Dussauchoy, A., Parameter estimation of the generalized gamma distribution (2008) Mathematics and Computers In Simulation, 79, pp. 955-963 | |
dc.description | Ibrahim, J.G., Chen, M.H., Sinha, D., (2001) Bayesian Survival Analysis, , Springer-Verlag: New York | |
dc.description | Kalbfleisch, J.D., Prentice, R.L., (1980) The Statistical Analysis of Failure Time Data, , New York: John Wiley & Sons | |
dc.description | Lawless, J.F., (2003) Statistical Models and Methods For Lifetime Data, , Wiley: New York | |
dc.description | Lesaffre, E., Verbeke, G., Local Influence in linear mixed models (1998) Biometrics, 54, pp. 570-582 | |
dc.description | Li, C.-S., Taylor, J.M.G., Sy, J.P., Identifiability of cure models (2001) Statist. Probab. Lett, 54, pp. 389-395 | |
dc.description | Li, Y., Tiwari, R.C., Guha, S., Mixture cure survival models with dependent censoring (2005) Harvard University Biostatistics Working Paper Series, 41, pp. 211-224 | |
dc.description | Lipsitz, S.R., Laird, N.M., Harrington, D.P., Using the Jackknife to estimate the variance of regression estimators from repeated measures studies (1990) Communications In Statistics: Theory Methods, 19, pp. 821-845 | |
dc.description | Liu, S.Z., On local Influence for elliptical linear models (2000) Statist. Papers, 26, pp. 1-40 | |
dc.description | Longini, I.M., Halloran, M.E., A frailty mixture model for estimating vaccine e cacy (1996) Appl. Statist, 45, pp. 165-173 | |
dc.description | Maller, R., Zhou, X., (1996) Survival Analysis With Long-term Survivors, , New York:Wiley | |
dc.description | Manly, B.F.J., (1997) Randomization, Bootstrap and Monte Carlo Methods In Biology, , 2nd Edition. Chapman and Hall: London | |
dc.description | Mizoi, M.F., Bolfarine, H., Pedroso-De-Lima, A.C., Cure Rate Model with Measurement Error (2007) Communications In Statistics Simulation and Computation, 36, pp. 185-196 | |
dc.description | Ortega, E.M.M., Paula, G.A., Bolfarine, H., Deviance Residuals in Generalized Log-Gamma Regression Models with Censored Observations (2008) J. Statistical Computation and Simulation, 78, pp. 747-764 | |
dc.description | Ortega, E.M.M., Cancho, V.G., Bolfarine, H., Influence diagnostics in exponentiated-Weibull regression models with censored data (2006) Statistics and Operations Research Transactions, 30, pp. 171-192 | |
dc.description | Ortega, E.M.M., Bolfarine, H., Paula, G.A., Influence diagnostics in generalized log-gamma regression models (2003) Computational Statistics and Data Analysis, 42, pp. 165-186 | |
dc.description | Ortega, E.M.M., (2001) Influence Analysis and Residual In Generalized Log-gamma Regression Models, , Doctoral Thesis, Department of Statistics, University of São Paulo, Brazil (in Portuguese) | |
dc.description | Paula, G.A., Assessing local Influence in restricted regressions models (1993) Computational Statistics and Data Analysis, 16, pp. 63-79 | |
dc.description | Peng, Y., Dear, K., A nonparametric mixture model for cure rate estimation (2000) Biometrics, 56, pp. 237-243 | |
dc.description | Pettitt, A.N., Bin Daud, I., Case-weight measures of Influence for proportional hazards regression (1989) Applied Statistics, 38, pp. 51-67 | |
dc.description | Price, D.L., Manatunga, A.K., Modelling survival data with a cured fraction using frailty models (2001) Statistics In Medicine, 20, pp. 1515-1527 | |
dc.description | Silva, G.O., Ortega, E.M.M., Cancho, V.G., Barreto, M.L., Log- Burr XII Regression Models with Censored Data (2008) Computational Statistics and Data Analysis, 52, pp. 3820-3842 | |
dc.description | Stacy, E.W., A generalization of the gamma distribution (1962) Ann. Math. Stat, 33, pp. 1187-1192 | |
dc.description | Sy, J.P., Taylor, M.M.G., Estimation in a proportional hazards cure model (2000) Biometrics, 56, pp. 227-336 | |
dc.description | Wang, P., Puterman, M.L., Cockburn, I., Le, N., Mixed Poisson regression models with covariate dependent rates (1996) Biometrics, 52, pp. 381-400 | |
dc.description | Yu, B., Peng, Y., Mixture cure models for multivariate survival data (2008) Computational Statistics and Data Analysis, 52, pp. 1524-1532 | |
dc.description | Zen, D., Yin, G., Ibrahim, G.I., Semiparametric Transformation Models for Survival Data with a Cure Fraction data (2006) J. Amer. Statist. Assoc, 101, pp. 670-684 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Sankhya: The Indian Journal of Statistics | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Generalized Log-gamma Mixture Model For Cure Rate: Estimation And Sensitivity Analysis | |
dc.type | Artículos de revistas | |