dc.creatorSouza N.M.
dc.creatorRamos A.Y.
dc.creatorBarbosa L.C.
dc.date2002
dc.date2015-06-30T16:45:32Z
dc.date2015-11-26T15:37:49Z
dc.date2015-06-30T16:45:32Z
dc.date2015-11-26T15:37:49Z
dc.date.accessioned2018-03-28T22:46:14Z
dc.date.available2018-03-28T22:46:14Z
dc.identifier
dc.identifierJournal Of Non-crystalline Solids. , v. 304, n. 1-3, p. 195 - 199, 2002.
dc.identifier223093
dc.identifier10.1016/S0022-3093(02)01022-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0036605209&partnerID=40&md5=7932a633232f9da28d2183a367131947
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101975
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101975
dc.identifier2-s2.0-0036605209
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263738
dc.description70TeO2-20ZnO-10Na2O glasses can be doped by up to some percents in Er3+, and the doped glasses have a luminescence line around 1.55 μm, broader than 70 nm, making them suitable potential materials for multiplexer devices. As the shape and intensity of the luminescence line is determined by the local site around Er3+, X-ray absorption spectroscopy was used here to determine this local environment in a series of glasses doped with 1-5 wt% Er2O3. Measurements made in the usual conditions of data range give results similar to those obtained in the literature for other multicomponent oxide glasses. The fitting procedure gives an average coordination shell of around 7 oxygen atoms at a distance of around 0.23 nm. The disorder in this shell is expressed by a Debye Waller term, relatively small (<0.01 Å2) in view of the broadness of the luminescence emission line. Complementary measurements were performed in the transmission mode on the most concentrated samples over a larger k-extension. Based on the qualitative analysis we suggest the existence of an additional site, with larger distances to the oxygen neighbors. This additional site could be responsible for the broadening of the luminescence lines. © 2002 Elsevier Science B.V. All rights reserved.
dc.description304
dc.description1-3
dc.description195
dc.description199
dc.descriptionMears, R.J., Reekie, L., Jauncey, I.M., Payne, D.N., (1987) Electr. Lett., 23, p. 1026
dc.descriptionDesurvire, E., (1994) Erbium Doped Fiber Amplifiers, , Wiley, New York
dc.descriptionSnitzer, E., Woodcock, R., (1965) Appl. Phys. Lett., 6, p. 45
dc.descriptionHüfner, S., (1978) Optical Spectra of Transparent Rare-earth Compounds, , Academic Press, New York
dc.descriptionWang, J.S., Vogel, E.M., Snitzer, E., (1994) Optic. Mater., 3, p. 187
dc.descriptionArgawal, G.P., (1997) Fiber-Optics Communication Systems, 2nd Ed., , Wiley, New York
dc.descriptionJha, A., Shen, S., Naftaly, M., (2000) Phys. Rev. B, 62, p. 6215
dc.descriptionPeters, P.M., Houde-Walter, S.N., (1998) J. Non-Cryst. Solids, 239, p. 162
dc.descriptionBispo, A.P., (1998), master theses/UNICAMP, Campinas, BrazilRodrigues, A.R.D., Craievich, A.F., Gonçalves da Silva, C.E.T., (1998) J. Synchrotron Rad., 5, p. 1157
dc.descriptionTolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N., (2001) J. Synchrotron Rad., 8, p. 1040
dc.descriptionSayers, D.E., Bunker, B.A., (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, p. 211. , D.C. Koningsberger, R. Prins (Eds.), Wiley, New York
dc.descriptionRessler, T., (1997) J. Phys. (Paris) IV, 7, pp. C2-C269
dc.descriptionNewville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., Jacoby, Y., (1995) Physica B, 208-209, p. 154
dc.descriptionZabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., Eller, M.J., (1995) Phys. Rev. B, 52, p. 2995
dc.descriptionPauling, L., Shappell, M.D., (1930) Z. Kristallogr., 74, p. 28
dc.descriptionMoon, R.M., Koehler, W.C., Child, H.R., Raubenheimer, L.J., (1968) Phys. Rev., 176, p. 722
dc.descriptionLe Neindre, L., Jiang, S., Hwang, B.C., Luo, T., Watson, J., Peyghambarian, N., (1999) J. Non-Cryst. Solids, 255, p. 97
dc.descriptionTanabe, S., (1999) J. Non-Cryst. Solids, 259, p. 1
dc.descriptionCrozier, E.D., Rehr, J.J., Ingalls, R., (1988) X-Ray Absorption: Principles, Techniques of EXAFS, SEXAFS and XANES, p. 375. , D.C. Koningsberger, R. Prins (Eds.), Wiley, New York
dc.descriptionAnderson, R., Brennan, T., Cole, J.M., Mountjoy, G., Pickup, D.M., Newport, R.J., Saunders, G.A., (1999) J. Mater. Res., 14, p. 4706
dc.descriptionMarcus, M.A., Polman, A., (1991) J. Non-Cryst. Solids, 136, p. 260
dc.descriptionBrown, I.D., Altermatt, D., (1985) Acta Crystallogr. B, 41, p. 244
dc.descriptionBrese, N.E., O'Keeffe, M., (1991) Acta Crystallogr. B, 47, p. 192
dc.languageen
dc.publisher
dc.relationJournal of Non-Crystalline Solids
dc.rightsfechado
dc.sourceScopus
dc.titleEr3+ Environment In Teo2-zno-na2o Glasses
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución