dc.creatorSilva A.P.
dc.creatorSpinelli J.E.
dc.creatorGarcia A.
dc.date2009
dc.date2015-06-26T13:37:08Z
dc.date2015-11-26T15:37:48Z
dc.date2015-06-26T13:37:08Z
dc.date2015-11-26T15:37:48Z
dc.date.accessioned2018-03-28T22:46:14Z
dc.date.available2018-03-28T22:46:14Z
dc.identifier
dc.identifierJournal Of Alloys And Compounds. , v. 480, n. 2, p. 485 - 493, 2009.
dc.identifier9258388
dc.identifier10.1016/j.jallcom.2009.01.105
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-67349283506&partnerID=40&md5=b157a72e50b32e0f76b739d26a5090d8
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92694
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92694
dc.identifier2-s2.0-67349283506
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263736
dc.descriptionUpward directional unsteady-state solidification experiments were performed with both a hypomonotectic Al-2.0 wt% Bi alloy and a monotectic Al-3.2 wt% Bi alloy. Besides, the monotectic composition (3.2 wt% Bi) was directionally solidified under downward transient heat flow conditions, which enables the effects of melt convection on the final microstructure to be evaluated since the collective downward movement of Bi-rich particles is favored in such case. This is due to the density differences between the two coexisting liquid phases. The thermal parameters such as cooling rate, growth rate and thermal gradient were experimentally determined by data collected from cooling curves recorded along the casting length. The monotectic features observed in the Al-3.2 wt% Bi alloy castings, i.e. the interphase spacing and Bi-rich particles diameter were correlated with the growth rate and thermal gradient. The cell spacing was experimentally determined for the Al-2.0 wt% Bi alloy as a function of both the cooling rate and tip growth rate. These experimental data were compared with the main predictive cellular growth models from the literature. A comparison between upward and downward unsteady-state solidification results for the interphase spacing and Bi-rich particles diameter has also been conducted. © 2009 Elsevier B.V. All rights reserved.
dc.description480
dc.description2
dc.description485
dc.description493
dc.descriptionPhanikumar, G., Dutta, P., Galun, R., Chattopadhyay, K., (2004) Mater. Sci. Eng. A, 371, pp. 91-102
dc.descriptionYasuda, H., Ohnaka, I., Fujimoto, S., Takezawa, N., Tsuchiyama, A., Nakano, T., Uesugi, K., (2006) Scripta Mater., 54, pp. 527-532
dc.descriptionYasuda, H., Ohnaka, I., Fujimoto, S., Sugiyama, A., Hayashi, Y., Yamamoto, M., Tsuchiyama, A., Kishio, K., (2004) Mater. Lett., 58, pp. 911-915
dc.descriptionGrugel, R.N., Lograsso, T.A., Hellawell, A., (1984) Metall. Trans. A, 15, pp. 1003-1012
dc.descriptionZhao, J.Z., He, J., Hu, Z.Q., Ratke, L., (2004) Z. Metallkd., 95, pp. 362-368
dc.descriptionLudwig, A., Wu, M., Abondano, A., Ratke, L., (2006) Mater. Sci. Forum, 508, pp. 193-198
dc.descriptionRatke, L., Müller, A., (2006) Scripta Mater., 54, pp. 1217-1220
dc.descriptionRatke, L., (2005) Mater. Sci. Eng. A, 413-414, pp. 504-508
dc.descriptionCarlberg, T., Bergman, A., (1985) Scripta Metall., 19, pp. 333-336
dc.descriptionDerby, B., Favier, J.J., (1983) Acta Metall., 31, pp. 1123-1130
dc.descriptionYang, S., Liu, W., (2001) J. Mater. Sci., 36, pp. 5351-5355
dc.descriptionGrugel, R.N., Hellawell, A., (1981) Metall. Trans., 12 A, pp. 669-681
dc.descriptionSilva, A.P., Spinelli, J.E., Garcia, A., J Alloy Compd, , in press. doi:10.1016/j.jallcom.2008.07.021
dc.descriptionRatke, L., (2003) Metall. Mater. Trans., 34 A, pp. 449-457
dc.descriptionAoi, I., Ishino, M., Yoshida, M., Fukunaga, H., Nakae, H., (2001) J. Cryst. Growth, 222, pp. 806-815
dc.descriptionReuß, M., Ratke, L., Zhao, J., (2006) Mater. Sci. Forum, 508, pp. 37-44
dc.descriptionHunt, J.D., (1979) International Conference on Solidification and Casting of Met als, pp. 3-9. , The Metals Society, London
dc.descriptionKurz, W., Fisher, J.D., (1981) Acta Metall., 29, pp. 11-20
dc.descriptionKurz, W., Fisher, J.D., (1992) Fundamentals of Solidification, , Trans Tech Public, Switzerland pp. 85-90
dc.descriptionTrivedi, R., (1984) Metall. Mater. Trans., 15 A, pp. 977-982
dc.descriptionHunt, J.D., Lu, S.Z., (1996) Metall. Mater. Trans., 27 A, pp. 611-623
dc.descriptionSpinelli, J.E., Ferreira, I.L., Garcia, A., (2004) J. Alloy Compd., 384, pp. 217-226
dc.descriptionGündüz, M., Çardili, E., (2002) Mater. Sci. Eng. A, 327, pp. 167-185
dc.descriptionRocha, O.L., Siqueira, C.A., Garcia, A., (2003) Mater. Sci. Eng. A, 361, pp. 111-118
dc.descriptionGoulart, P.R., Cruz, K.A.S., Spinelli, J.E., Cheung, N., Ferreira, I.L., Garcia, A., (2009) J. Alloys Compd., 470, pp. 589-599
dc.descriptionRosa, D.M., Spinelli, J.E., Ferreira, I.L., Garcia, A., (2006) J. Alloys Compd., 422, pp. 227-238
dc.descriptionBouchard, D., Kirkaldy, J.S., (1997) Metall. Mater. Trans., 28 B, pp. 651-663
dc.descriptionZhao, J.Z., Ratke, L., (2004) Scripta Mater., 50, pp. 543-546
dc.descriptionRatke, L., Alkemper, J., (1995) Adv. Colloid Interf. Sci., 58, pp. 151-170
dc.languageen
dc.publisher
dc.relationJournal of Alloys and Compounds
dc.rightsfechado
dc.sourceScopus
dc.titleMicrostructural Evolution During Upward And Downward Transient Directional Solidification Of Hypomonotectic And Monotectic Al-bi Alloys
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución