dc.creatorCamino J.F.
dc.creatorArruda J.R.F.
dc.date2009
dc.date2015-06-26T13:37:01Z
dc.date2015-11-26T15:37:44Z
dc.date2015-06-26T13:37:01Z
dc.date2015-11-26T15:37:44Z
dc.date.accessioned2018-03-28T22:46:10Z
dc.date.available2018-03-28T22:46:10Z
dc.identifier
dc.identifierMechanical Systems And Signal Processing. , v. 23, n. 8, p. 2538 - 2556, 2009.
dc.identifier8883270
dc.identifier10.1016/j.ymssp.2009.04.006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-67651061195&partnerID=40&md5=2dc601765ac38834362b981346e84709
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92665
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92665
dc.identifier2-s2.0-67651061195
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263719
dc.descriptionThis paper investigates through numerical simulations the limits of performance for a class of feedforward and feedback compensators used for structural acoustic isolation, where the emphasis is on controlling the structural vibration that is responsible for the sound radiation. The proposed designs aim to attenuate the sound pressure transmitted through a double panel system filled with absorption material. The controller must reduce the noise radiated through the back panel when the front panel is excited by an external force that causes structural vibration. A point moment simulating a piezoelectric patch attached to the back panel is the actuator. In the feedforward setting, the pre-filter assumes full information of the exogenous disturbance. On the other hand, the feedback designs assume full information of the state. The H2 and H∞ norms are the optimality criteria used for both the filter design and the control design. All four designs are cast in the linear matrix inequality framework and incorporate parametric uncertainties described by a bounded convex polyhedral domain. It is shown that the performance of the feedforward and the feedback compensators are equivalent when model uncertainties are not taken into account. Otherwise, considering uncertainties, the feedback compensators have a more robust behavior. © 2009 Elsevier Ltd. All rights reserved.
dc.description23
dc.description8
dc.description2538
dc.description2556
dc.descriptionBerglund, B., Hassmén, P., Soames Job, R.F., Sources and effects of low-frequency noise (1996) Journal of the Acoustical Society of America, 99 (5), pp. 2985-3002
dc.descriptionPersson, K., Björkman, M., Annoyance due to low frequency noise and the use of the dBA scale (1988) Journal of Sound and Vibration, 127 (3), pp. 491-497
dc.descriptionLondon, A., Transmission of reverberant sound through double walls (1950) Journal of the Acoustical Society of America, 22, pp. 270-279
dc.descriptionKinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V., (1982) Fundamentals of Acoustic. third ed., , Wiley, New York
dc.descriptionSas, P., Bao, C., Augusztinovicz, F., Desmet, W., Active control of sound transmission through a double panel partition (1995) Journal of Sound and Vibration, 180 (4), pp. 609-625
dc.descriptionFuller, C.R., von Flotow, A.H., Active control of sound and vibration (1995) IEEE Control Systems Magazine, 15 (6), pp. 9-19
dc.descriptionMeurers, T., Veres, S.M., Elliot, S.J., Frequency selective feedback for active noise control (2002) IEEE Control Systems Magazine, 22 (4)
dc.descriptionKaiser, O.E., Pietrzko, S.J., Morari, M., Feedback control of sound transmission through a double glazed window (2003) Journal of Sound and Vibration, 263 (4), pp. 775-795
dc.descriptionAlujevic, N., Frampton, K.D., Gardonio, P., Stability and performance of a smart double panel with decentralized active dampers (2008) AIAA Journal, 46 (7), pp. 1747-1756
dc.descriptionFuller, C.R., Elliott, S.J., Nelson, P.A., (1996) Active Control of Vibration, , Academic Press, San Diego
dc.descriptionNelson, P.A., Elliott, S.J., (1996) Active Control of Sound. third ed., , Academic Press, San Diego
dc.descriptionFuller, C.R., Jones, J.D., Experiments on reduction of propeller induced interior noise by active control of cylinder vibration (1987) Journal of Sound and Vibration, 112 (2), pp. 389-395
dc.descriptionDonadon, L.V., Arruda, J.R.F., Experimental energetic analyses of an actively controlled one-dimensional acoustic waveguide (2005) Journal of Sound and Vibration, 280 (1-2), pp. 159-179
dc.descriptionKuo, S.M., Morgan, D.R., (1996) Active Noise Control Systems: Algorithms and DSP Implementations, , Addison-Wesley Publishing Company, New York
dc.descriptionMacMartin, D.G., A feedback perspective on the LMS disturbance feedforward algorithm (1994) Proceedings of the 1994 American Control Conference, Baltimore, MD, USA, pp. 1632-1636
dc.descriptionHassibi, B., Sayed, A.H., Kailath, T., H∞ optimality of the LMS algorithm (1996) IEEE Transactions on Signal Processing, 44 (2), pp. 267-280
dc.descriptionHong, J., Bernstein, D.S., A comparison of fundamental properties of feedback and feedforward control: Bode integral constraints and spillover (1995) Proceedings of the ACTIVE 95, Newport Beach, CA, USA, pp. 929-940
dc.descriptionPan, J., Bao, C., Analytical study of different approaches for active control of sound transmission through double walls (1998) Journal of the Acoustical Society of America, 103 (2), pp. 1916-1922
dc.descriptionArruda, J.R.F., Moreira, F.J.O., Pereira, A.K.A., Comparing feedback vibration control and feedforward power-flow-based control strategies using a simple plate example (1997) Proceedings of the EAA International Symposium on Active Control of Sound and Vibration, Budapest, pp. 75-92
dc.descriptionCrawley, E.F., de Luis, J., Use of piezoelectric actuators as elements of intelligent structures (1987) AIAA Journal, 25 (10), pp. 1373-1385
dc.descriptionBatoz, J.-L., Dhatt, G., Modélisation des structures par éléments finis (1990), 2. , Poutres et plaques, Hermès, ParisAtalla, N., Panneton, R., Debergue, P., A mixed displacement-pressure formulation of poroelastic materials (1998) Journal of Acoustical Society of America, 104 (3), pp. 1444-1452
dc.descriptionTanneau, O., Lamary, P., Moyne, S.L., Pompéi, M., Modélisation par éléments finis de matériaux poroélastiques dans les complexes d'isolation des avions: finite element modelisation of poroelastic materials for aircraft insulation complex (2003) Mécanique & Industries, 4 (2), pp. 71-75
dc.descriptionWu, T.W., (2001) Boundary Element Acoustics: Fundamentals and Computer Codes, Advances in Boundary Elements, 7. , WIT Press, University of Kentucky, USA
dc.descriptionBoyd, S.P., Barratt, C.H., Norman, S., Linear controller design: limits of performance via convex optimization (1990) Proceedings of the IEEE, 78 (3), pp. 529-574
dc.descriptionZhou, K., Doyle, J.C., Glover, K., (1996) Robust and Optimal Control, , Prentice-Hall, Upper Saddle River, NJ, USA
dc.descriptionSkelton, R.E., Iwasaki, T., Grigoriadis, K.M., (1998) A Unified Algebraic Approach to Linear Control Design, , Taylor & Francis, Inc., Bristol, PA, USA
dc.descriptionBoyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory (1994) Studies in Applied Mathematics, 15. , SIAM, Philadelphia
dc.descriptionHandbook of Semidefinite Programming (2000) International Series in Operational Research Management Science, 27. , H. Wolkowicz, R. Saigal, L. Vandenberghe Eds, Kluwer Academic Publishers, Boston
dc.descriptionGeromel, J.C., de Oliveira, M.C., H2 and H∞ robust filtering for convex bounded uncertain systems (2001) IEEE Transactions on Automatic Control, 46 (1), pp. 100-107
dc.descriptionScherer, C., Gahinet, P., Chilali, M., Multiobjective output-feedback control via LMI optimization (1997) IEEE Transactions on Automatic Control, 42 (7), pp. 896-911
dc.descriptionMasubuchi, I., Ohara, A., Suda, N., LMI-based controller synthesis: a unified formulation and solution (1998) International Journal of Robust and Nonlinear Control, 8 (8), pp. 669-686
dc.descriptionJuang, J.-N., Pappa, R.S., Eigensystem realization algorithm for modal parameter identification and model reduction (1985) Journal of Guidance Control and Dynamics, 8 (5), pp. 620-627
dc.descriptionSoize, C., A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics (2005) Journal of Sound and Vibration, 288 (3), pp. 623-652
dc.descriptionDesceliers, C., Ghanem, R., Soize, C., Maximum likelihood estimation of stochastic chaos representations from experimental data (2006) International Journal for Numerical Methods in Engineering, 66 (6), pp. 978-1001
dc.descriptionde Oliveira, P.J., Oliveira, R.C.L.F., Leite, V.J.S., Montagner, V.F., Peres, P.L.D., H2 guaranteed cost computation by means of parameter dependent Lyapunov functions (2004) International Journal of Systems Science, 35 (5), pp. 305-315
dc.descriptionde Oliveira, P.J., Oliveira, R.C.L.F., Leite, V.J.S., Montagner, V.F., Peres, P.L.D., H∞ guaranteed cost computation by means of parameter dependent Lyapunov functions (2004) Automatica, 40 (6), pp. 1053-1061
dc.descriptionDonadon, L.V., Siviero, D.A., Camino, J.F., Arruda, J.R.F., Comparing a filtered-X LMS and an H2 controller for the attenuation of the sound radiated by a panel (2006) Proceedings of the ISMA, Leuven, Belgium, pp. 199-210. , (cdrom)
dc.languageen
dc.publisher
dc.relationMechanical Systems and Signal Processing
dc.rightsfechado
dc.sourceScopus
dc.titleH2 And H∞ Feedforward And Feedback Compensators For Acoustic Isolation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución