dc.creatorTeixeira P.J.P.L.
dc.creatorDe Toledo Thomazella D.P.
dc.creatorReis O.
dc.creatorPrado P.F.V.D.
dc.creatorRio M.C.S.D.
dc.creatorFiorin G.L.
dc.creatorJose J.
dc.creatorCosta G.G.L.
dc.creatorNegri V.A.
dc.creatorMondego J.M.C.
dc.creatorMieczkowski P.
dc.creatorPereira G.A.G.
dc.date2014
dc.date2015-06-25T17:50:52Z
dc.date2015-11-26T15:37:44Z
dc.date2015-06-25T17:50:52Z
dc.date2015-11-26T15:37:44Z
dc.date.accessioned2018-03-28T22:46:09Z
dc.date.available2018-03-28T22:46:09Z
dc.identifier
dc.identifierPlant Cell. American Society Of Plant Biologists, v. 26, n. 11, p. 4245 - 4269, 2014.
dc.identifier10404651
dc.identifier10.1105/tpc.114.130807
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919800656&partnerID=40&md5=bb3fb1b8d7d2fb7a1f560a57a0e40177
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85929
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85929
dc.identifier2-s2.0-84919800656
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263717
dc.descriptionWitches’ broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen’s transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly,M. perniciosa biotrophic mycelia develop as long-termparasites that orchestrate changes in plantmetabolismto increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
dc.description26
dc.description11
dc.description4245
dc.description4269
dc.descriptionAdhikari, T., Balaji, B., Breeden, J., Goodwin, S., Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiol. Mol (2007) Plant Pathol, 71, pp. 55-68
dc.descriptionAime, M.C., Phillips-Mora, W., The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022
dc.descriptionAlbersheim, P., Muhlethaler, K., Frey-Wyssling, A., Stained pectin as seen in the electron microscope (1960) J. Biophys. Biochem. Cytol, 8, pp. 501-506
dc.descriptionAlvim, F.C., Mattos, E.M., Pirovani, C.P., Gramacho, K., Pungartnik, C., Brendel, M., Cascardo, J.C., Vincentz, M., Carbon sourceinduced changes in the physiology of the cacao pathogen Moniliophthora perniciosa (Basidiomycetes) affect mycelial morphology and secretion of necrosis-inducing proteins (2009) Genet. Mol. Res, 8, pp. 1035-1050
dc.descriptionApel, K., Hirt, H., Reactive oxygen species: Metabolism, oxidative stress, and signal transduction (2004) Annu. Rev. Plant Biol, 55, pp. 373-399
dc.descriptionArgôLo Santos Carvalho, H., De Andrade Silva, E.M., Carvalho Santos, S., Micheli, F., Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications (2013) Fungal Genet. Biol, 60, pp. 110-121
dc.descriptionArgout, X., The genome of Theobroma cacao (2011) Nat. Genet, 43, pp. 101-108
dc.descriptionAzevedo, H., Lino-Neto, T., Tavares, R.M., An improved method for high-quality RNA isolation from needles of adult maritime pine trees (2003) Plant Mol. Biol. Rep, 21, pp. 333-338
dc.descriptionBerger, S., Sinha, A.K., Roitsch, T., Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions (2007) J. Exp. Bot, 58, pp. 4019-4026
dc.descriptionBonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S., Infection with virulent and avirulent P. Syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves (2006) Planta, 225, pp. 1-12
dc.descriptionBraun, B.R., Head, W.S., Wang, M.X., Johnson, A.D., Identification and characterization of TUP1-regulated genes in Candida albicans (2000) Genetics, 156, pp. 31-44
dc.descriptionBuchanan-Wollaston, V., The molecular biology of leaf senescence (1997) J. Exp. Bot, 48, pp. 181-199
dc.descriptionCaldo, R.A., Nettleton, D., Peng, J., Wise, R.P., Stagespecific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles (2006) Mol. Plant Microbe Interact, 19, pp. 939-947
dc.descriptionCantacessi, C., Campbell, B.E., Visser, A., Geldhof, P., Nolan, M.J., Nisbet, A.J., Matthews, J.B., Gasser, R.B., A portrait of the “SCP/TAPS” proteins of eukaryotes—developing a framework for fundamental research and biotechnological outcomes (2009) Biotechnol. Adv, 27, pp. 376-388
dc.descriptionCeita, G.D., Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora pemiciosa (2007) Plant Sci, 173, pp. 106-117
dc.descriptionChandran, D., Inada, N., Hather, G., Kleindt, C.K., Andwildermuth, M.C., Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators (2010) Proc. Natl. Acad. Sci, 107, pp. 460-465. , USA
dc.descriptionChou, H.M., Bundock, N., Rolfe, S.A., Scholes, J.D., Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism (2000) Mol. Plant Pathol, 1, pp. 99-113
dc.descriptionChoudhary, V., Schneiter, R., Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins (2012) Proc. Natl. Acad. Sci, 109, pp. 16882-16887. , USA
dc.descriptionColeman, J.J., Mylonakis, E., Efflux in fungi: La pièce de résistance (2009) PLoS Pathog, 5
dc.descriptionCong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823
dc.descriptionDa Hora Junior, B.T., Poloni, J.F., Lopes, M.A., Dias, C.V., Gramacho, K.P., Schuster, I., Sabau, X., Andmicheli, F., Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches’ broom disease. Mol (2012) Biosyst, 8, pp. 1507-1519
dc.descriptionDe O Barsottini, M.R., Functional diversification of cerato- platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Mol (2013) Plant Microbe Interact, 26, pp. 1281-1293
dc.descriptionDe Oliveira, B.V., Teixeira, G.S., Reis, O., Barau, J.G., Teixeira, P.J., Do Rio, M.C., Domingues, R.R., Pereira, G.A., A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches’ broom disease in cacao. Fungal Genet (2012) Biol, 49, pp. 922-932
dc.descriptionDe Wit, P.J., The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry (2012) PLoS Genet, 8
dc.descriptionDeeken, R., Engelmann, J.C., Efetova, M., Czirjak, T., Müller, T., Kaiser, W.M., Tietz, O., Hedrich, R., An integrated view of gene expression and solute profiles of Arabidopsis tumors: A genomewide approach (2006) Plant Cell, 18, pp. 3617-3634
dc.descriptionDezwaan, T.M., Carroll, A.M., Valent, B., Sweigard, J.A., Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues (1999) Plant Cell, 11, pp. 2013-2030
dc.descriptionDias, C.V., Mendes, J.S., Dos Santos, A.C., Pirovani, C.P., Da Silva Gesteira, A., Micheli, F., Gramacho, K.P., De Mattos Cascardo, J.C., Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol (2011) Biochem, 49, pp. 917-922
dc.descriptionDodds, P.N., Rathjen, J.P., Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat (2010) Rev. Genet, 11, pp. 539-548
dc.descriptionDoehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., Kämper, J., Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis (2008) Plant J, 56, pp. 181-195
dc.descriptionEl Gueddari, N.E., Rauchhaus, U., Moerschbacher, B.M., Deising, H.B., Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi (2002) New Phytol, 156, pp. 103-112
dc.descriptionEvans, H.C., Pleomorphism in Crinipellis perniciosa, causal agent of Witches’ broom disease of cocoa (1980) Trans. Br. Mycol. Soc, 74, pp. 515-526
dc.descriptionFernandez, D., Tisserant, E., Talhinhas, P., Azinheira, H., Vieira, A., Petitot, A.S., Loureiro, A., Duplessis, S., 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol (2012) Plant Pathol, 13, pp. 17-37
dc.descriptionFisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J., Emerging fungal threats to animal, plant and ecosystem health (2012) Nature, 484, pp. 186-194
dc.descriptionFotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L., Williams, L.E., The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum (2003) Plant Physiol, 132, pp. 821-829
dc.descriptionFrias, G., Purdy, L.H., Schmidt, R.A., An inoculation method for evaluating resistence of cacao to Crinipellis perniciosa (1995) Plant Dis, 79, pp. 787-791
dc.descriptionFujiki, Y., Yoshikawa, Y., Sato, T., Inada, N., Ito, M., Nishida, I., Watanabe, A., Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol (2001) Plant, 111, pp. 345-352
dc.descriptionGan, S., Amasino, R.M., Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence) (1997) Plant Physiol, 113, pp. 313-319
dc.descriptionGarnica, D.P., Upadhyaya, N.M., Dodds, P.N., Rathjen, J.P., Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing (2013) PLoS ONE, 8
dc.descriptionGerrits, P.O., Smid, L., A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections (1983) J. Microsc, 132, pp. 81-85
dc.descriptionGesteira, A.S., Micheli, F., Carels, N., Da Silva, A.C., Gramacho, K.P., Schuster, I., Macêdo, J.N., Cascardo, J.C., Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa (2007) Ann. Bot. (Lond.), 100, pp. 129-140
dc.descriptionGibbs, G.M., Roelants, K., O’bryan, M.K., The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis- related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr (2008) Rev, 29, pp. 865-897
dc.descriptionGlazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu (2005) Rev. Phytopathol, 43, pp. 205-227
dc.descriptionGodfrey, D., Böhlenius, H., Pedersen, C., Zhang, Z., Emmersen, J., Thordal-Christensen, H., Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif (2010) BMC Genomics, 11, p. 317
dc.descriptionGoldman, N., Yang, Z., A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol (1994) Evol, 11, pp. 725-736
dc.descriptionGraham, I.A., Seed storage oil mobilization. Annu (2008) Rev. Plant Biol, 59, pp. 115-142
dc.descriptionGriffith, G.W., Nicholson, J., Nenninger, A., Birch, R.N., Hedger, J.N., Witches’ brooms and frosty pods: Two major pathogens of cacao. N.Z (2003) J. Bot, 41, pp. 423-435
dc.descriptionGuyon, K., Balagué, C., Roby, D., Raffaele, S., Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum (2014) BMC Genomics, 15, p. 336
dc.descriptionHorst, R.J., Engelsdorf, T., Sonnewald, U., Voll, L.M., Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis (2008) J. Plant Physiol, 165, pp. 19-28
dc.descriptionJoly, D.L., Feau, N., Tanguay, P., Hamelin, R.C., Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.) (2010) BMC Genomics, 11, p. 422
dc.descriptionJones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444, pp. 323-329
dc.descriptionKale, S.D., External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells (2010) Cell, 142, pp. 284-295
dc.descriptionKarnovsky, M.J., A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy (1965) J. Cell Biol, 27, pp. 137-139
dc.descriptionKawahara, Y., Oono, Y., Kanamori, H., Matsumoto, T., Itoh, T., Minami, E., Simultaneous RNA-seq analysis of a mixedtranscriptome of rice and blast fungus interaction (2012) PLoS ONE, 7
dc.descriptionKemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A.C., Balmuth, A.L., Robert-Seilaniantz, A., Bailey, K., Jones, J.D., Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana (2011) PLoS Biol, 9
dc.descriptionKilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol (2007) Lett, 274, pp. 238-244
dc.descriptionKulkarni, R.D., Kelkar, H.S., Dean, R.A., An eight-cysteine- containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem (2003) Sci, 28, pp. 118-121
dc.descriptionKunjeti, S.G., Evans, T.A., Marsh, A.G., Gregory, N.F., Kunjeti, S., Meyers, B.C., Kalavacharla, V.S., Donofrio, N.M., RNA-Seq reveals infection-related global gene changes in Phytophthora phaseoli, the causal agent of lima bean downy mildew. Mol (2012) Plant Pathol, 13, pp. 454-466
dc.descriptionLam, H.M., Peng, S.S., Coruzzi, G.M., Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana (1994) Plant Physiol, 106, pp. 1347-1357
dc.descriptionLangmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol, 10, p. R25
dc.descriptionLeal, G.A., Jr., Albuquerque, P.S., Figueira, A., Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol (2007) Plant Pathol, 8, pp. 279-292
dc.descriptionLeal, G.A., Gomes, L.H., Albuquerque, P.S., Tavares, F.C., Figueira, A., Searching for Moniliophthora perniciosa pathogenicity genes (2010) Fungal Biol, 114, pp. 842-854
dc.descriptionLi, L., Stoeckert, C.J., Jr., Roos, D.S., OrthoMCL: Identification of ortholog groups for eukaryotic genomes (2003) Genome Res, 13, pp. 2178-2189
dc.descriptionLink, T.I., Lang, P., Scheffler, B.E., Duke, M.V., Graham, M.A., Cooper, B., Tucker, M.L., Whitham, S.A., The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol (2014) Plant Pathol, 15, pp. 379-393
dc.descriptionLivak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408
dc.descriptionLoqué, D., Ludewig, U., Yuan, L., Von WiréN, N., Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole (2005) Plant Physiol, 137, pp. 671-680
dc.descriptionLowe, R.G., Cassin, A., Grandaubert, J., Clark, B.L., Van Dewouw, A.P., Rouxel, T., Howlett, B.J., Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species (2014) PLoS ONE, 9
dc.descriptionMaere, S., Heymans, K., Kuiper, M., BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks (2005) Bioinformatics, 21, pp. 3448-3449
dc.descriptionMarcel, S., Sawers, R., Oakeley, E., Angliker, H., Paszkowski, U., Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae (2010) Plant Cell, 22, pp. 3177-3187
dc.descriptionMeinhardt, L.W., Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases (2014) BMC Genomics, 15, p. 164
dc.descriptionMeinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D., Pereira, G.A., Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Mol (2008) Plant Pathol, 9, pp. 577-588
dc.descriptionMelnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genet (2012) Genomes, 8, pp. 1261-1279
dc.descriptionMoktali, V., Park, J., Fedorova-Abrams, N.D., Park, B., Choi, J., Lee, Y.H., Kang, S., Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes (2012) BMC Genomics, 13, p. 525
dc.descriptionMonaghan, J., Zipfel, C., Plant pattern recognition receptor complexes at the plasma membrane (2012) Curr. Opin. Plant Biol, 15, pp. 349-357
dc.descriptionMondego, J.M., A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao (2008) BMC Genomics, 9, p. 548
dc.descriptionMortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat (2008) Methods, 5, pp. 621-628
dc.descriptionMotamayor, J.C., The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color (2013) Genome Biol, r53, p. 14
dc.descriptionMünch, S., Lingner, U., Floss, D.S., Ludwig, N., Sauer, N., Deising, H.B., The hemibiotrophic lifestyle of Colletotrichum species (2008) J. Plant Physiol, 165, pp. 41-51
dc.descriptionNavarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439
dc.descriptionO’ Brien, T.P., Feder, N., McCully, M.E., Polychromatic staining of plant cell walls by Toluidine blue O (1964) Protoplasma, 59, p. 368
dc.descriptionOrchard, J., Collin, H.A., Hardwick, K., Isaac, S., Changes in morphology and measurement of cytokinin levels during the development of witches’ brooms on cocoa (1994) Plant Pathol, 43, pp. 65-72
dc.descriptionPanstruga, R., Establishing compatibility between plants and obligate biotrophic pathogens (2003) Curr. Opin. Plant Biol, 6, pp. 320-326
dc.descriptionPazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W., Scala, A., Mukherjee, P., Cerato-platanins: Elicitors and effectors (2014) Plant Sci, , http://dx.doi.org/10.1016/j.plantsci.2014.02.009
dc.descriptionPedersen, C., Structure and evolution of barley powdery mildew effector candidates (2012) BMC Genomics, 13, p. 694
dc.descriptionPenman, D., Britton, G., Hardwick, K., Collin, H.A., Isaac, S., Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches’ broom disease of Theobroma cacao. Mycol (2000) Res, 104, pp. 671-675
dc.descriptionPerfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol (2001) Plant Pathol, 2, pp. 101-108
dc.descriptionPetre, B., Morin, E., Tisserant, E., Hacquard, S., Da Silva, C., Poulain, J., Delaruelle, C., Duplessis, S., RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter (2012) PLoS ONE, 7
dc.descriptionPires, A.B., Gramacho, K.P., Silva, D.C., Góes-Neto, A., Silva, M.M., Muniz-Sobrinho, J.S., Porto, R.F., Pereira, G.A., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiol, 9, p. 158
dc.descriptionPrados-Rosales, R.C., Roldán-Rodríguez, R., Serena, C., LóPez-Berges, M.S., Guarro, J., Martínez-Del-Pozo, Á., Di Pietro, A., A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts (2012) J. Biol. Chem, 287, pp. 21970-21979
dc.descriptionPungartnik, C., Melo, S.C., Basso, T.S., Macena, W.G., Cascardo, J.C., Brendel, M., Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet (2009) Biol, 46, pp. 461-472
dc.descriptionPurdy, L.H., Schmidt, R.A., Status of cacao witches’ broom: Biology, epidemiology, and management. Annu (1996) Rev. Phytopathol, 34, pp. 573-594
dc.descriptionRanwez, V., Harispe, S., Delsuc, F., Douzery, E.J., MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons (2011) PLoS ONE, 6
dc.descriptionRashotte, A.M., Carson, S.D., To, J.P., Kieber, J.J., Expression profiling of cytokinin action in Arabidopsis (2003) Plant Physiol, 132, pp. 1998-2011
dc.descriptionReich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P., GenePattern 2.0. Nat (2006) Genet, 38, pp. 500-501
dc.descriptionRincones, J., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol (2008) Plant Microbe Interact, 21, pp. 891-908
dc.descriptionRobinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: A Bioconductor package for differential expression analysis of digital gene expression data (2010) Bioinformatics, 26, pp. 139-140
dc.descriptionScarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W., Schiavinato, M.A., Cascardo, J.C., Pereira, G.A., Biochemical changes during the development of witches’ broom: The most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J. Exp. Bot, 56, pp. 865-877
dc.descriptionSkibbe, D.S., Doehlemann, G., Fernandes, J., Walbot, V., Maize tumors caused by Ustilago maydis require organspecific genes in host and pathogen (2010) Science, 328, pp. 89-92
dc.descriptionStergiopoulos, I., De Wit, P.J., Fungal effector proteins. Annu (2009) Rev. Phytopathol, 47, pp. 233-263
dc.descriptionStudholme, D.J., Glover, R.H., Boonham, N., Application of high-throughput DNA sequencing in phytopathology. Annu (2011) Rev. Phytopathol, 49, pp. 87-105
dc.descriptionTeixeira, P.J., Thomazella, D.P., Vidal, R.O., Do Prado, P.F., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M., The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) PLoS ONE, 7
dc.descriptionThimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Stitt, M., MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J, 37, pp. 914-939
dc.descriptionThomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol, 194, pp. 1025-1034
dc.descriptionTiburcio, R.A., Costa, G.G., Carazzolle, M.F., Mondego, J.M., Schuster, S.C., Carlson, J.E., Guiltinan, M.J., Pereira, G.A., Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao (2010) J. Mol. Evol, 70, pp. 85-97
dc.descriptionTierney, L., Linde, J., Müller, S., Brunke, S., Molina, J.C., Hube, B., Schöck, U., Kuchler, K., An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front (2012) Microbiol, 3, p. 85
dc.descriptionVargas, W.A., Martín, J.M., Rech, G.E., Rivera, L.P., Benito, E.P., Díaz-Mínguez, J.M., Thon, M.R., Sukno, S.A., Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize (2012) Plant Physiol, 158, pp. 1342-1358
dc.descriptionVolodarsky, D., Leviatan, N., Otcheretianski, A., Fluhr, R., HORMONOMETER: A tool for discerning transcript signatures of hormone action in the Arabidopsis transcriptome (2009) Plant Physiol, 150, pp. 1796-1805
dc.descriptionWalters, D.R., McRoberts, N., Plants and biotrophs: A pivotal role for cytokinins? (2006) Trends Plant Sci, 11, pp. 581-586
dc.descriptionWang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X., Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway (2007) Curr. Biol, 17, pp. 1784-1790
dc.descriptionWäspi, U., Schweizer, P., Dudler, R., Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew (2001) Plant Cell, 13, pp. 153-161
dc.descriptionWeßling, R., Schmidt, S.M., Micali, C.O., Knaust, F., Reinhardt, R., Neumann, U., Ver Loren Van Themaat, E., Panstruga, R., Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genet (2012) Biol, 49, pp. 470-482
dc.descriptionWestermann, A.J., Gorski, S.A., Vogel, J., Dual RNA-seq of pathogen and host. Nat (2012) Rev. Microbiol, 10, pp. 618-630
dc.descriptionWise, R.P., Moscou, M.J., Bogdanove, A.J., Whitham, S.A., Transcript profiling in host-pathogen interactions. Annu (2007) Rev. Phytopathol, 45, pp. 329-369
dc.descriptionXu, L., Zhu, L., Tu, L., Liu, L., Yuan, D., Jin, L., Long, L., Zhang, X., Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNASeq- dependent transcriptional analysis and histochemistry (2011) J. Exp. Bot, 62, pp. 5607-5621
dc.descriptionYamagishi, J., Natori, A., Tolba, M.E., Mongan, A.E., Sugimoto, C., Katayama, T., Kawashima, S., Suzuki, Y., Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum (2014) Genome Res, 24, pp. 1433-1444
dc.descriptionYang, Z., PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol (2007) Evol, 24, pp. 1586-1591
dc.descriptionZaparoli, G., Barsottini, M.R., De Oliveira, J.F., Dyszy, F., Teixeira, P.J., Barau, J.G., Garcia, O., Dias, S.M., The crystal structure of necrosis- and ethylene-inducing protein 2 from the causal agent of cacao’s Witches’ Broom disease reveals key elements for its activity (2011) Biochemistry, 50, pp. 9901-9910
dc.descriptionZhang, X.W., Jia, L.J., Zhang, Y., Jiang, G., Li, X., Zhang, D., Tang, W.H., In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles (2012) Plant Cell, 24, pp. 5159-5176
dc.descriptionZuccaro, A., Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica (2011) PLoS Pathog, 7
dc.languageen
dc.publisherAmerican Society of Plant Biologists
dc.relationPlant Cell
dc.rightsfechado
dc.sourceScopus
dc.titleHigh-resolution Transcript Profiling Of The Atypical Biotrophic Interaction Between Theobroma Cacao And The Fungal Pathogen Moniliophthora Perniciosa
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución