Artículos de revistas
Newer Aspects Of The Pathophysiology Of Sickle Cell Disease Vaso-occlusion
Registro en:
Hemoglobin. , v. 33, n. 1, p. 1 - 16, 2009.
3630269
10.1080/03630260802625709
2-s2.0-60749094795
Autor
Conran N.
Franco-Penteado C.F.
Costa F.F.
Institución
Resumen
Sickle cell disease is an inherited disorder of hemoglobin (Hb) synthesis, caused by a single nucleotide substitution (GTG>GAG) at the sixth codon of the β-globin gene, leading to the production of a defective form of Hb, Hb S. When deoxygenated, Hb S polymerizes, damaging the sickle erythrocyte and it is this polymerization that is the primary indispensable event in the molecular pathogenesis of sickle cell disease. Hb S polymerization results in a series of cellular alterations in red cell morphology and function that shorten the red cell life span and leads to vascular occlusion. Sickle cell disease vaso-occlusion is now known to constitute a complex multifactorial process characterized by recurrent vaso-occlusion, ischemia-reperfusion injury, and oxidative stress with consequent vascular endothelial cell activation that induces a chronic inflammatory state in sickle cell disease individual and is propagated by elevated levels of circulating inflammatory cytokines. Activation of the endothelium results in the induction of endothelial adhesion molecule expression that mediates red and white cell adhesion to the vessel wall and the formation of heterocellular aggregates, followed by secondary red cell trapping, all of which contribute to reduced blood flow and eventually obstruction of the micro-circulation. Reduced nitric oxide bioavailability, caused principally by its consumption by cell-free Hb, liberated during intravascular hemolysis, contributes to this process by facilitating vasoconstriction and adhesion molecule activity. Copyright © Informa Healthcare USA, Inc. 33 1 1 16 Steinberg, M.H., Management of sickle cell disease (1999) N Engl J Med, 340 (13), pp. 1021-1030 Madigan, C., Malik, P., Pathophysiology and therapy for haemoglobinopathies. Part I: Sickle cell disease (2006) Expert Rev Mol Med, 8 (9), pp. 1-23 Eaton, W.A., Hofrichter, J., Hemoglobin S gelation and sickle cell disease (1987) Blood, 70 (5), pp. 1245-1266 Mozzarelli, A., Hofrichter, J., Eaton, W.A., Delay time of Hemoglobin S polymerization prevents most cells from sickling in vivo (1987) Science, 237 (4814), pp. 500-506 Chiang, E.Y., Frenette, P.S., Sickle cell vaso-occlusion (2005) Hematol-Oncol Clin North Am, 19 (5), pp. 771-784 Frenette, P.S., Atweh, G.F., Sickle cell disease: Old discoveries, new concepts, and future promise (2007) J Clin Invest, 117 (4), pp. 850-858 Switzer, J.A., Hess, D.C., Nichols, F.T., Adams, R.J., Pathophysiology and treatment of stroke in sickle-cell disease: Present and future (2006) Lancet Neurol, 5 (6), pp. 501-512 Graido-Gonzalez, E., Doherty, J.C., Bergreen, E.W., Organ, G., Telfer, M., McMillen, M.A., Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis (1998) Blood, 92 (7), pp. 2551-2555 Belcher, J.D., Mahaseth, H., Welch, T.E., Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice (2005) Am J Physiol Heart Circ Physiol, 288 (6), pp. H2715-H2725 Conran, N., Fattori, A., Saad, S.T., Costa, F.F., Increased levels of soluble ICAM-1 in the plasma of sickle cell patients are reversed by hydroxyurea (2004) Am J Hematol, 76 (4), pp. 343-347 Kato, G.J., Martyr, S., Blackwelder, W.C., Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality (2005) Br J Haematol, 130 (6), pp. 943-953 Conran, N., Saad, S.T., Costa, F.F., Ikuta, T., Leukocyte numbers correlate with plasma levels of granulocyte-macrophage colony-stimulating factor in sickle cell disease (2007) Ann Hematol, 86 (4), pp. 255-261 Croizat, H., Circulating cytokines in sickle cell patients during steady state (1994) Br J Haematol, 87 (3), pp. 592-597 Lanaro, C., Franco-Penteado, C.F., Conran, N., Saad, S.T.O., Costa, F.F., Anti-inflammatory effect of hydroxyurea therapy in sickle cell disease (2006) Blood, 108 (11), p. 3806 Belcher, J.D., Marker, P.H., Weber, J.P., Hebbel, R.P., Vercellotti, G.M., Activated monocytes in sickle cell disease: Potential role in the activation of vascular endothelium and vaso-occlusion (2000) Blood, 96 (7), pp. 2451-2459 Goncalves, M.S., Queiroz, I.L., Cardoso, S.A., Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease (2001) Braz J Med Biol Res, 34 (10), pp. 1309-1313 Conran, N., Almeida, C.B., Lanaro, C., Inhibition of caspase-dependent spontaneous apoptosis via a cAMP-protein kinase A dependent pathway in neutrophils from sickle cell disease patients (2007) Br J Haematol, 139 (1), pp. 148-158 Duits, A.J., Rodriguez, T., Schnog, J.J., Serum levels of angiogenic factors indicate a pro-angiogenic state in adults with sickle cell disease (2006) Br J Haematol, 134 (1), pp. 116-119 Hebbel, R.P., Yamada, O., Moldow, C.F., Jacob, H.S., White, J.G., Eaton, J.W., Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: Possible mechanism for microvascular occlusion in sickle cell disease (1980) J Clin Invest, 65 (1), pp. 154-160 Joneckis, C.C., Ackley, R.L., Orringer, E.P., Wayner, E.A., Parise, L.V., Integrin α4β1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia (1993) Blood, 82 (12), pp. 3548-3555 Murphy, M.M., Zayed, M.A., Evans, A., Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU (2005) Blood, 105 (8), pp. 3322-3329 Zennadi, R., Hines, P.C., De Castro, L.M., Cartron, J.P., Parise, L.V., Telen, M.J., Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-αvβ3 interactions (2004) Blood, 104 (12), pp. 3774-3781 Eyler, C.E., Jackson, T., Elliott, L.E., β2-Adrenergic receptor and adenylate cyclase gene polymorphisms affect sickle red cell adhesion (2008) Br J Haematol, 141 (1), pp. 105-108 Gambero, S., Canalli, A.A., Traina, F., Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties (2007) Eur J Haematol, 78 (2), pp. 144-151 Yasin, Z., Witting, S., Palascak, M.B., Joiner, C.H., Rucknagel, D.L., Franco, R.S., Phosphatidylserine externalization in sickle red blood cells: Associations with cell age, density, and Hemoglobin F (2003) Blood, 102 (1), pp. 365-370 Wagner, M.C., Eckman, J.R., Wick, T.M., Sickle cell adhesion depends on hemodynamics and endothelial activation (2004) J Lab Clin Med, 144 (5), pp. 260-267 Castro, O., Brambilla, D.J., Thorington, B., The acute chest syndrome in sickle cell disease: Incidence and risk factors. The Cooperative Study of Sickle Cell Disease (1994) Blood, 84 (2), pp. 643-649 Kinney, T.R., Sleeper, L.A., Wang, W.C., Silent cerebral infarcts in sickle cell anemia: A risk factor analysis. The Cooperative Study of Sickle Cell Disease (1999) Pediatrics, 103 (3), pp. 640-645 Miller, S.T., Sleeper, L.A., Pegelow, C.H., Prediction of adverse outcomes in children with sickle cell disease (2000) N Eng J Med, 342 (2), pp. 83-89 Assis, A., Conran, N., Canalli, A.A., Lorand-Metze, I., Saad, S.T., Costa, F.F., Effect of cytokines and chemokines on sickle neutrophil adhesion to fibronectin (2005) Acta Haematol, 113 (2), pp. 130-136 Benkerrou, M., Delarche, C., Brahimi, L., Hydroxyurea corrects the dysregulated L-selectin expression and increased H2O2 production of polymorphonuclear neutrophils from patients with sickle cell anemia (2002) Blood, 99 (7), pp. 2297-2303 Fadlon, E., Vordermeier, S., Pearson, T.C., Blood polymorphonuclear leukocytes from the majority of sickle cell patients in the crisis phase of the disease show enhanced adhesion to vascular endothelium and increased expression of CD64 (1998) Blood, 91 (1), pp. 266-274 Kasschau, M.R., Barabino, G.A., Bridges, K.R., Golan, D.E., Adhesion of sickle neutrophils and erythrocytes to fibronectin (1996) Blood, 87 (2), pp. 771-780 Hofstra, T.C., Kalra, V.K., Meiselman, H.J., Coates, T.D., Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst (1996) Blood, 87 (10), pp. 4440-4447 Finnegan, E.M., Turhan, A., Golan, D.E., Barabino, G.A., Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion (2007) Am J Hematol, 82 (4), pp. 266-275 Brittain, J.E., Knoll, C.M., Ataga, K.I., Orringer, E.P., Parise, L.V., Fibronectin bridges monocytes and reticulocytes via integrin α4β1 (2008) Br J Haematol, 141 (6), pp. 872-881 Frenette, P.S., Sickle cell vaso-occlusion: Multistep and multicellular paradigm (2002) Curr Opin Hematol, 9 (2), pp. 101-106 Turhan, A., Weiss, L.A., Mohandas, N., Coller, B.S., Frenette, P.S., Primary role for adherent leukocytes in sickle cell vascular occlusion: A new paradigm (2002) Proc Nat Acad Sci USA, 99 (5), pp. 3047-3051 Chiang, E.Y., Hidalgo, A., Chang, J., Frenette, P.S., Imaging receptor microdomains on leukocyte subsets in live mice (2007) Nat Methods, 4 (3), pp. 219-222 Canalli, A.A., Conran, N., Fattori, A., Saad, S.T., Costa, F.F., Increased adhesive properties of eosinophils in sickle cell disease (2004) Exp Hematol, 32 (8), pp. 728-734 Canalli, A.A., Franco-Penteado, C.F., Traina, F., Saad, S.T., Costa, F.F., Conran, N., Role for cAMP-protein kinase A signalling in augmented neutrophil adhesion and chemotaxis in sickle cell disease (2007) Eur J Haematol, 79 (4), pp. 330-337 Stenmark, K.R., Davie, N.J., Reeves, J.T., Frid, M.G., Hypoxia, leukocytes, and the pulmonary circulation (2005) J Appl Physiol, 98 (2), pp. 715-721 Kuebler, W.M., Inflammatory pathways and microvascular responses in the lung (2005) Pharmacol Rep, 57 (SUPPL.), pp. 196-205 Serjeant, G.R., Serjeant, B.E., Mohan, J.S., Clare, A., Leg ulceration in sickle cell disease: Medieval medicine in a modern world (2005) Hematol Oncol Clin North Am, 19 (5), pp. 943-956 Smith, P.C., The causes of skin damage and leg ulceration in chronic venous disease (2006) Int J Low Extrem Wounds, 5 (3), pp. 160-168 Wun, T., Paglieroni, T., Rangaswami, A., Platelet activation in patients with sickle cell disease (1998) Br J Haematol, 100 (4), pp. 741-749 Tomer, A., Harker, L.A., Kasey, S., Eckman, J.R., Thrombogenesis in sickle cell disease (2001) J Lab Clin Med, 137 (6), pp. 398-407 Lee, S.P., Ataga, K.I., Orringer, E.P., Phillips, D.R., Parise, L.V., Biologically active CD40 ligand is elevated in sickle cell anemia: Potential role for platelet-mediated inflammation (2006) Arterioscler Thromb Vasc Biol, 26 (7), pp. 1626-1631 Raghavachari, N., Xu, X., Harris, A., Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease (2007) Circulation, 115 (12), pp. 1551-1562 Canalli, A.A., Franco-Penteado, C.F., Traina, F., Altered red cell and platelet adhesion in the hemolytic diseases:Hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria and sickle cell anemia (2006) Blood, 108 (11), pp. 364A Wun, T., Paglieroni, T., Field, C.L., Platelet-erythrocyte adhesion in sickle cell disease (1999) J Invest Med, 47 (3), pp. 121-127 Ataga, K.I., Cappellini, M.D., Rachmilewitz, E.A., β-Thalassaemia and sickle cell anaemia as paradigms of hypercoagulability (2007) Br J Haematol, 139 (1), pp. 3-13 Murad, F., Cellular signaling with nitric oxide and cyclic GMP (1999) Braz J Med Biol Res, 32 (11), pp. 1317-1327 Furchgott, R.F., Zawadzki, J.V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine (1980) Nature, 288 (5789), pp. 373-376 Moncada, S., Higgs, E.A., The discovery of nitric oxide and its role in vascular biology (2006) Br J Pharmacol, 147 (SUPPL. 1), pp. S193-S201 De Caterina, R., Libby, P., Peng, H.B., Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines (1995) J Clin Invest, 96 (2), pp. 60-68 Conran, N., Gambero, A., Ferreira, H.H., Antunes, E., de Nucci, G., Nitric oxide has a role in regulating VLA-4-integrin expression on the human neutrophil cell surface (2003) Biochem Pharmacol, 66 (1), pp. 43-50 Conran, N., Ferreira, H.H., Lorand-Metze, I., Thomazzi, S.M., Antunes, E., de Nucci, G., Nitric oxide regulates human eosinophil adhesion mechanisms in vitro by changing integrin expression and activity on the eosinophil cell surface (2001) Br J Pharmacol, 134 (3), pp. 632-638 Reiter, C.D., Wang, X., Tanus-Santos, J.E., Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease (2002) Nat Med, 8 (12), pp. 1383-1389 Mack, A.K., Kato, G.J., Sickle cell disease and nitric oxide: A paradigm shift? (2006) Int J Biochem Cell Biol, 38 (8), pp. 1237-1243 Morris, C.R., New strategies for the treatment of pulmonary hypertension in sickle cell disease: The rationale for arginine therapy (2006) Treat Respir Med, 5 (1), pp. 31-45 Kato, G.J., Gladwin, M.T., Steinberg, M.H., Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes (2007) Blood Rev, 21 (1), pp. 37-47 Wood, K.C., Granger, D.N., Sickle cell disease: Role of reactive oxygen and nitrogen metabolites (2007) Clin Exp Pharmacol Physiol, 34 (9), pp. 926-932 Wood, K.C., Hebbel, R.P., Granger, D.N., Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice (2005) FASEB J, 19 (8), pp. 989-991 Aslan, M., Ryan, T.M., Adler, B., Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease (2001) Proc Natl Acad Sci USA, 98 (26), pp. 15215-15220 Hebbel, R.P., Eaton, J.W., Balasingam, M., Steinberg, M.H., Spontaneous oxygen radical generation by sickle erythrocytes (1982) J Clin Invest, 70 (6), pp. 1253-1259 Aslan, M., Thornley-Brown, D., Freeman, B.A., Reactive species in sickle cell disease (2000) Ann NY Acad Sci, 899, pp. 375-391 Xia, Y., Dawson, V.L., Dawson, T.M., Snyder, S.H., Zweier, J.L., Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury (1996) Proc Natl Acad Sci USA, 93 (13), pp. 6770-6774 Amer, J., Ghoti, H., Rachmilewitz, E., Koren, A., Levin, C., Fibach, E., Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants (2006) Br J Haematol, 132 (1), pp. 108-113 Natta, C.L., Chen, L.C., Chow, C.K., Selenium and glutathione peroxidase levels in sickle cell anemia (1990) Acta Haematol, 83 (3), pp. 130-132 Schacter, L., Warth, J.A., Gordon, E.M., Prasad, A., Klein, B.L., Altered amount and activity of superoxide dismutase in sickle cell anemia (1988) FASEB J, 2 (3), pp. 237-243 Kuypers, F.A., Scott, M.D., Schott, M.A., Lubin, B., Chiu, D.T., Use of ektacytometry to determine red cell susceptibility to oxidative stress (1990) J Lab Clin Med, 116 (4), pp. 535-545 Kaul, D.K., Liu, X.D., Choong, S., Belcher, J.D., Vercellotti, G.M., Hebbel, R.P., Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice (2004) Am J Physiol Heart Circ Physiol, 287 (1), pp. H293-H301 Sultana, C., Shen, Y., Rattan, V., Johnson, C., Kalra, V.K., Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes (1998) Blood, 92 (10), pp. 3924-3935 Teixeira, S.M., Cortellazzi, L.C., Grotto, H.Z., Effect of hydroxyurea on Gγ chain fetal hemoglobin synthesis by sickle-cell disease patients (2003) Braz J Med Biol Res, 36 (10), pp. 1289-1292 Stuart, M.J., Nagel, R.L., Sickle-cell disease (2004) Lancet, 364 (9442), pp. 1343-1360 Fathallah, H., Atweh, G.F., Induction of fetal hemoglobin in the treatment of sickle cell disease (2006) Hematology Am Soc Hematol Educ Program, pp. 58-62 Steinberg, M.H., Barton, F., Castro, O., Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment (2003) JAMA, 289 (13), pp. 1645-1651 Huang, J., Kim-Shapiro, D.B., King, S.B., Catalase-mediated nitric oxide formation from hydroxyurea (2004) J Med Chem, 47 (14), pp. 3495-3501 King, S.B., Nitric oxide production from hydroxyurea (2004) Free Rad Biol Med, 37 (6), pp. 737-744 Cokic, V.P., Beleslin-Cokic, B.B., Tomic, M., Stojilkovic, S.S., Noguchi, C.T., Schechter, A.N., Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells (2006) Blood, 108 (1), pp. 184-191 Charache, S., Barton, F.B., Moore, R.D., Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive 'switching' agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia (1996) Medicine, 75 (6), pp. 300-326 Athanassiou, G., Moutzouri, A., Kourakli, A., Zoumbos, N., Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia (2006) Clin Hemorheol Microcirc, 35 (1-2), pp. 291-295 Weiner, D.L., Hibberd, P.L., Betit, P., Cooper, A.B., Botelho, C.A., Brugnara, C., Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease (2003) JAMA, 289 (9), pp. 1136-1142 Morris, C.R., Vichinsky, E.P., van Warmerdam, J., Hydroxyurea and arginine therapy: Impact on nitric oxide production in sickle cell disease (2003) J Pediatr Hematol Oncol, 5 (8), pp. 629-634 Archer, D.R., Stiles, J.K., Newman, G.W., C-reactive protein and interleukin-6 are decreased in transgenic sickle cell mice fed a high protein diet (2008) J Nutr, 138 (6), pp. 1148-1152 Mack, A.K., McGowan, I.V.R., Tremonti, C.K., Sodium nitrite promotes regional blood flow in patients with sickle cell disease: A phase I/II study (2008) Br J Haematol, 142 (6), pp. 971-978 Minneci, P.C., Deans, K.J., Zhi, H., Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin (2005) J Clin Invest, 115 (12), pp. 3409-3417 Hunter, C.J., Dejam, A., Blood, A.B., Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator (2004) Nat Med, 10 (10), pp. 1122-1127 Canalli, A.A., Franco-Penteado, C.F., Saad, S.T.O., Conran, N., Costa, F.F., Increased Adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation (2008) Haematologica, 93 (4), pp. 605-609 Bao, B., Prasad, A.S., Beck, F.W., Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients (2008) Transl Res, 152 (2), pp. 67-80 Solovey, A., Kollander, R., Shet, A., Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin (2004) Blood, 104 (3), pp. 840-846 Machado, R.F., Martyr, S., Kato, G.J., Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension (2005) Br J Haematol, 130 (3), pp. 445-453 Almeida, C.B., Traina, F., Lanaro, C., High expression of the cGMP-specific phosphodiesterase, PDE9A, in sickle cell disease (SCD) and the effects of its inhibition in erythroid cells and SCD neutrophils (2008) Br J Haematol, 142 (5), pp. 836-844 Finnegan, E.M., Barabino, G.A., Liu, X.D., Chang, H.Y., Jonczyk, A., Kaul, D.K., Small-molecule cyclic αvβ3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vaso-occlusion (2007) Am J Physiol Heart Circ Physiol, 293 (3), pp. H1038-H1045 Chang, J., Shi, P.A., Chiang, E.Y., Frenette, P.S., Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion (2008) Blood, 111 (2), pp. 915-923 Romagnoli, E., Burzotta, F., Trani, C., Biondi-Zoccai, G.G., Giannico, F., Crea, F., Rationale for intracoronary administration of abciximab (2007) J Thromb Thrombolysis, 23 (1), pp. 57-63 Solovey, A.A., Solovey, A.N., Harkness, J., Hebbel, R.P., Modulation of endothelial cell activation in sickle cell disease: A pilot study (2001) Blood, 97 (7), pp. 1937-1941 Mahaseth, H., Vercellotti, G.M., Welch, T.E., Polynitroxyl albumin inhibits inflammation and vasoocclusion in transgenic sickle mice (2005) J Lab Clin Med, 145 (4), pp. 204-211 De Franceschi, L., Bachir, D., Galacteros, F., Oral magnesium pidolate: Effects of long-term administration in patients with sickle cell disease (2000) Br J Haematol, 108 (2), pp. 284-289 Bennekou, P., de Franceschi, L., Pedersen, O., Treatment with NS3623, a novel Cl-conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: A possible new therapeutic approach for sickle cell disease (2001) Blood, 97 (5), pp. 1451-1457 Stocker, J.W., De Franceschi, L., McNaughton-Smith, G.A., Corrocher, R., Beuzard, Y., Brugnara, C., ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice (2003) Blood, 101 (6), pp. 2412-2418