dc.creator | Dias U. | |
dc.creator | Dias Z. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:36:30Z | |
dc.date | 2015-11-26T15:36:56Z | |
dc.date | 2015-06-26T13:36:30Z | |
dc.date | 2015-11-26T15:36:56Z | |
dc.date.accessioned | 2018-03-28T22:45:24Z | |
dc.date.available | 2018-03-28T22:45:24Z | |
dc.identifier | 3642032222; 9783642032226 | |
dc.identifier | Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 5676 LNBI, n. , p. 13 - 23, 2009. | |
dc.identifier | 3029743 | |
dc.identifier | 10.1007/978-3-642-03223-3_2 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-69949185523&partnerID=40&md5=d6db618502ee8c61620fcc6af4764b09 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/92560 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/92560 | |
dc.identifier | 2-s2.0-69949185523 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263549 | |
dc.description | Genome Rearrangements addresses the problem of finding the minimum number of global operations, such as transpositions, reversals, fusions and fissions that transform a given genome into another. In this paper we deal with transposition events, which are events that change the position of two contiguous block of genes in the same chromosome. The transposition event generates the transposition distance problem, that is to find the minimum number of transposition that transform one genome (or chromosome) into another. Although some tractables instances were found [20,14], it is not known if an exact polynomial time algorithm exists. Recently, Dias and Souza [9] proposed polynomial-sized Integer Linear Programming (ILP) models for rearrangement distance problems where events are restricted to reversals, transpositions or a combination of both. In this work we devise a slight different approach. We present some Constraint Logic Programming (CLP) models for transposition distance based on known bounds to the problem. © 2009 Springer Berlin Heidelberg. | |
dc.description | 5676 LNBI | |
dc.description | | |
dc.description | 13 | |
dc.description | 23 | |
dc.description | Apt, K., Wallace, M., (2007) Constraints Logic Programming using Eclipse, , Cambridge | |
dc.description | Bafna, V., Pevzner, P.A., Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome (1995) Molecular Biology and Evolution, 12 (2), pp. 239-246 | |
dc.description | Bafna, V., Pevzner, P.A., Sorting by Transpositions (1998) SIAM Journal on Discrete Mathematics, 11 (2), pp. 224-240 | |
dc.description | Benoǐt-Gagńe, M., Hamel, S.: A New and Faster Method of Sorting by Transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, 4580, pp. 131-141. Springer, Heidelberg (2007)Caprara, A., Lancia, G., Ng, S.-K., A Column-Generation Based Branch-and-Bound Algorithm for Sorting by Reversals (1999) DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 47, pp. 213-226. , The American Mathematical Society | |
dc.description | Caprara, A., Lancia, G., Ng, S.-K., Sorting Permutations by Reversals through Branch-and-Price (1999), Technical Report OR-99-1, DEIS, Operations Research Group, University of BolognaCaprara, A., Lancia, G., Ng, S.-K., Fast Practical Solution of Sorting by Reversals (2000) Proceedings of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms (SODA, pp. 12-21. , San Francisco, USA, pp, ACM Press, New York | |
dc.description | Christie, D.A., (1998) Genome Rearrangement Problems, , PhD thesis, Glasgow University | |
dc.description | Dias, Z., Souza, C., Polynomial-sized ILP Models for Rearrangement Distance Problems (2007) BSB 2007 Poster Proceedings | |
dc.description | Dobzhansky, T., Sturtevant, A.H., Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species (1936) Proceedings of the National Academy of Science, 22, pp. 448-450 | |
dc.description | The Eclipse Constraint Programming System, , http://www.eclipse-clp.org, March 2009 | |
dc.description | Elias, I., Hartmn, T., A 1.375-Approximation Algorithm for Sorting by Transpositions (2006) Comput, pp. 369-379. , Trans, Biol. Bioinformatics 34 | |
dc.description | Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J., Sorting a Bridge Hand (2001) Discrete Math, 241 (1-3), pp. 289-300 | |
dc.description | Fortuna, V.J., (2005) Distǎncias de transposição entre genomas, , Master's thesis, Institute of Computing, University of Campinas | |
dc.description | Hannenhalli, S., Pevzner, P.A., Transforming Cabbage into Turnip (Polynomial Algorithm for Sorting Signed Permutations by Reversals) (1995) Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, pp. 178-189. , Las Vegas, USA, May | |
dc.description | Hannenhalli, S., Pevzner, P.A., Transforming Men into Mice (Polynomial Algorithm for Genomic Distance Problem) (1995) Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS, pp. 581-592. , October, IEEE Computer Society Press, Los Alamitos () 1995 | |
dc.description | Hartman, T., Sharan, R., A Simpler 1.5-approximation Algorithm for Sorting by Transpositions , pp. 156-169. , Springer, Heidelberg 2003Hausen, R.A., Faria, L., Figueiredo, C.M.H., Kowada, L.A.B.: On the toric graph as a tool to handle the problem of sorting by transpositions. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), 5167, pp. 79-91. Springer, Heidelberg (2008)Kececioglu, J.D., Ravi, R.: Of Mice and Men: Algorithms for Evolutionary Distances Between Genomes with Translocation. In: Proceedings of the 6th Annual Symposium on Discrete Algorithms, January 1995, pp. 604-613. ACM Press, New York (1995)Labarre, A., New Bounds and Tractable Instances for the Transposition Distance (2006) IEEE/ACM Trans. Comput. Biol. Bioinformatics, 3 (4), pp. 380-394 | |
dc.description | Marriott, K., Stuckey, P.J., (1998) Programming with Constraints: An Introduction, , MIT Press, Cambridge | |
dc.description | Mira, C.V.G., Dias, Z., Santos, H.P., Pinto, G.A., Walter, M.E.: Transposition Distance Based on the Algebraic Formalism. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), 5167, pp. 115-126. Springer, Heidelberg (2008)Palmer, J.D., Herbon, L.A., Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence (1988) Journal of Molecular Evolution, 27, pp. 87-97 | |
dc.description | Walter, M.E.M.T., Dias, Z., Meidanis, J., A New Approach for Approximating the Transposition Distance (2000) Proceedings of the String Processing and Information Retrieval (SPIRE, , September | |
dc.language | en | |
dc.publisher | | |
dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Constraint Programming Models For Transposition Distance Problem | |
dc.type | Actas de congresos | |