dc.creatorFreire I.L.
dc.creatorSantos Sampaio J.C.
dc.date2014
dc.date2015-06-25T17:50:45Z
dc.date2015-11-26T15:36:43Z
dc.date2015-06-25T17:50:45Z
dc.date2015-11-26T15:36:43Z
dc.date.accessioned2018-03-28T22:45:11Z
dc.date.available2018-03-28T22:45:11Z
dc.identifier
dc.identifierCommunications In Nonlinear Science And Numerical Simulation. , v. 19, n. 2, p. 350 - 360, 2014.
dc.identifier10075704
dc.identifier10.1016/j.cnsns.2013.06.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84884417942&partnerID=40&md5=88fbceb9a85c116ed3804513ee9c68eb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85906
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85906
dc.identifier2-s2.0-84884417942
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263495
dc.descriptionIn this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov. © 2013 Elsevier B.V.
dc.description19
dc.description2
dc.description350
dc.description360
dc.descriptionAnco, S.C., Bluman, G., Direct constrution method for conservation laws for partial differential equations part II: general treatment (2002) Eur J Appl Math, 41, pp. 567-585
dc.descriptionAtherton, R.W., Homsy, G.M., On the existence and formulation of variational principles for nonlinear differential equations (1975) Stud Appl Math, 54 (1), pp. 31-60
dc.descriptionBruzón, M.S., Gandarias, M.L., Ibragimov, N.H., Self-adjoint sub-classes of generalized thin film equations (2009) J Math Anal Appl, 357, pp. 307-313
dc.descriptionFreire, I.L., Conservation laws for self-adjoint first order evolution equations (2011) J Nonlinear Math Phys, 18, pp. 279-290
dc.descriptionFreire, I.L., Self-adjoint sub-classes of third and fourth-order evolution equations (2011) Appl Math Comput, 217, pp. 9467-9473
dc.descriptionFreire, I.L., Sampaio, J.C.S., Nonlinear self-adjointness of a generalized fifth-order KdV equation (2012) J Phys A: Math Theor, 45, p. 032001
dc.descriptionFreire, I.L., New conservation laws for inviscid Burgers equation (2012) Comput Appl Math, 31, pp. 559-567
dc.descriptionFreire, I.L., New classes of nonlinearly self-adjoint evolution equations of third- and fifth-order (2013) Commun Nonlinear Sci Numer Simul, 18, pp. 493-499
dc.descriptionGandarias, M.L., Weak self-adjoint differential equations (2011) J Phys A, 44, p. 262001. , (6 pp)
dc.descriptionGandarias, M.L., Bruzón, M.S., Conservation laws for a class of quasi self-adjoint third order equations (2012) Appl Math Comput, 219, pp. 668-678
dc.descriptionIbragimov, N.H., (1985) Transformation groups applied to mathematical physics, translated from the russian mathematics and its applications (Soviet series), , D. Reidel Publishing Co., Dordrecht
dc.descriptionIbragimov, N.H., Integrating factors, adjoint equations and Lagrangians (2006) J Math Anal Appl, 318, pp. 742-757
dc.descriptionIbragimov, N.H., Yasar, E., Non-local conservation laws in fluid dynamics (2007) Arch Alga, 4, pp. 136-143
dc.descriptionIbragimov, N.H., A new conservation theorem (2007) J Math Anal Appl, 333, pp. 311-328
dc.descriptionIbragimov, N.H., Quasi-self-adjoint differential equations (2007) Arch Alga, 4, pp. 55-60
dc.descriptionIbragimov, N.H., Torrisi, M., Tracinà, R., Quasi self-adjoint nonlinear wave equations (2010) J Phys A: Math Theor, 43, pp. 442001-442009
dc.descriptionIbragimov, N.H., Torrisi, M., Tracinà, R., Self-adjointness and conservation laws of a generalized Burgers equation (2011) J Phys A: Math Theor, 44, pp. 145201-145206
dc.descriptionIbragimov, N.H., Nonlinear self-adjointness and conservation laws (2011) J Phys A: Math Theor, 44, p. 432002. , (8 pp)
dc.descriptionIbragimov, N.H., Khamitova, R.S., Valenti, A., Self-adjointness of a generalized Camassa-Holm equation (2011) Appl Math Comput, 218, pp. 2579-2583
dc.descriptionIbragimov, N.H., Nonlinear self-adjointness in constructing conservation laws (2011) Arch Alga, pp. 1-90
dc.descriptionJohnpillai, A.G., Khalique, C.M., Conservation laws of KdV equation with time dependent coefficients (2011) Commun Nonlinear Sci Numer Simul, 16, pp. 3081-3089
dc.descriptionNoether, E., Invariante Variationsprobleme, Nachrichten von der Kön. Ges. der Wissenschaften zu Göttingen (1918) Math-Phys Kl, (2), pp. 235-257. , (English translation in: Transport Theory and Statistical Physics 1(3), (1971), 186-207)
dc.descriptionKara, A.H., Mahomed, F.M., Relantionship between symmetries and conservation laws (2006) Nonlinear Dyn, 39, pp. 367-383
dc.descriptionTorrisi, M., Tracinà, R., Quasi self-adjointness of a class of third order nonlinear dispersive equations (2013) Nonlinear Anal RWA, 14, pp. 1496-1502
dc.descriptionOlver, P.J., (1986) Applications of Lie groups to differential equations, , Springer, New York
dc.descriptionRosenau, P., Hyman, J.M., Compactons: solitons with finite wavelength (1993) Phys Rev Lett, 70, pp. 564-567
dc.descriptionSampaio, J.C.S., Simetrias de Lie e leis de conservação de equações evolutivas do tipo Korteweg-de Vries. Master Degree Dissertation, Universidade Federal do ABC
dc.description2012 [in Portuguese]Vinogradov, A.M., Local symmetries and conservation laws (1984) Acta Appl Math, 2, pp. 21-78
dc.languageen
dc.publisher
dc.relationCommunications in Nonlinear Science and Numerical Simulation
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Nonlinear Self-adjointness And Local Conservation Laws For A Class Of Evolution Equations Unifying Many Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución