dc.creator | Freire I.L. | |
dc.creator | Santos Sampaio J.C. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:50:45Z | |
dc.date | 2015-11-26T15:36:43Z | |
dc.date | 2015-06-25T17:50:45Z | |
dc.date | 2015-11-26T15:36:43Z | |
dc.date.accessioned | 2018-03-28T22:45:11Z | |
dc.date.available | 2018-03-28T22:45:11Z | |
dc.identifier | | |
dc.identifier | Communications In Nonlinear Science And Numerical Simulation. , v. 19, n. 2, p. 350 - 360, 2014. | |
dc.identifier | 10075704 | |
dc.identifier | 10.1016/j.cnsns.2013.06.010 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84884417942&partnerID=40&md5=88fbceb9a85c116ed3804513ee9c68eb | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85906 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85906 | |
dc.identifier | 2-s2.0-84884417942 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263495 | |
dc.description | In this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov. © 2013 Elsevier B.V. | |
dc.description | 19 | |
dc.description | 2 | |
dc.description | 350 | |
dc.description | 360 | |
dc.description | Anco, S.C., Bluman, G., Direct constrution method for conservation laws for partial differential equations part II: general treatment (2002) Eur J Appl Math, 41, pp. 567-585 | |
dc.description | Atherton, R.W., Homsy, G.M., On the existence and formulation of variational principles for nonlinear differential equations (1975) Stud Appl Math, 54 (1), pp. 31-60 | |
dc.description | Bruzón, M.S., Gandarias, M.L., Ibragimov, N.H., Self-adjoint sub-classes of generalized thin film equations (2009) J Math Anal Appl, 357, pp. 307-313 | |
dc.description | Freire, I.L., Conservation laws for self-adjoint first order evolution equations (2011) J Nonlinear Math Phys, 18, pp. 279-290 | |
dc.description | Freire, I.L., Self-adjoint sub-classes of third and fourth-order evolution equations (2011) Appl Math Comput, 217, pp. 9467-9473 | |
dc.description | Freire, I.L., Sampaio, J.C.S., Nonlinear self-adjointness of a generalized fifth-order KdV equation (2012) J Phys A: Math Theor, 45, p. 032001 | |
dc.description | Freire, I.L., New conservation laws for inviscid Burgers equation (2012) Comput Appl Math, 31, pp. 559-567 | |
dc.description | Freire, I.L., New classes of nonlinearly self-adjoint evolution equations of third- and fifth-order (2013) Commun Nonlinear Sci Numer Simul, 18, pp. 493-499 | |
dc.description | Gandarias, M.L., Weak self-adjoint differential equations (2011) J Phys A, 44, p. 262001. , (6 pp) | |
dc.description | Gandarias, M.L., Bruzón, M.S., Conservation laws for a class of quasi self-adjoint third order equations (2012) Appl Math Comput, 219, pp. 668-678 | |
dc.description | Ibragimov, N.H., (1985) Transformation groups applied to mathematical physics, translated from the russian mathematics and its applications (Soviet series), , D. Reidel Publishing Co., Dordrecht | |
dc.description | Ibragimov, N.H., Integrating factors, adjoint equations and Lagrangians (2006) J Math Anal Appl, 318, pp. 742-757 | |
dc.description | Ibragimov, N.H., Yasar, E., Non-local conservation laws in fluid dynamics (2007) Arch Alga, 4, pp. 136-143 | |
dc.description | Ibragimov, N.H., A new conservation theorem (2007) J Math Anal Appl, 333, pp. 311-328 | |
dc.description | Ibragimov, N.H., Quasi-self-adjoint differential equations (2007) Arch Alga, 4, pp. 55-60 | |
dc.description | Ibragimov, N.H., Torrisi, M., Tracinà, R., Quasi self-adjoint nonlinear wave equations (2010) J Phys A: Math Theor, 43, pp. 442001-442009 | |
dc.description | Ibragimov, N.H., Torrisi, M., Tracinà, R., Self-adjointness and conservation laws of a generalized Burgers equation (2011) J Phys A: Math Theor, 44, pp. 145201-145206 | |
dc.description | Ibragimov, N.H., Nonlinear self-adjointness and conservation laws (2011) J Phys A: Math Theor, 44, p. 432002. , (8 pp) | |
dc.description | Ibragimov, N.H., Khamitova, R.S., Valenti, A., Self-adjointness of a generalized Camassa-Holm equation (2011) Appl Math Comput, 218, pp. 2579-2583 | |
dc.description | Ibragimov, N.H., Nonlinear self-adjointness in constructing conservation laws (2011) Arch Alga, pp. 1-90 | |
dc.description | Johnpillai, A.G., Khalique, C.M., Conservation laws of KdV equation with time dependent coefficients (2011) Commun Nonlinear Sci Numer Simul, 16, pp. 3081-3089 | |
dc.description | Noether, E., Invariante Variationsprobleme, Nachrichten von der Kön. Ges. der Wissenschaften zu Göttingen (1918) Math-Phys Kl, (2), pp. 235-257. , (English translation in: Transport Theory and Statistical Physics 1(3), (1971), 186-207) | |
dc.description | Kara, A.H., Mahomed, F.M., Relantionship between symmetries and conservation laws (2006) Nonlinear Dyn, 39, pp. 367-383 | |
dc.description | Torrisi, M., Tracinà, R., Quasi self-adjointness of a class of third order nonlinear dispersive equations (2013) Nonlinear Anal RWA, 14, pp. 1496-1502 | |
dc.description | Olver, P.J., (1986) Applications of Lie groups to differential equations, , Springer, New York | |
dc.description | Rosenau, P., Hyman, J.M., Compactons: solitons with finite wavelength (1993) Phys Rev Lett, 70, pp. 564-567 | |
dc.description | Sampaio, J.C.S., Simetrias de Lie e leis de conservação de equações evolutivas do tipo Korteweg-de Vries. Master Degree Dissertation, Universidade Federal do ABC | |
dc.description | 2012 [in Portuguese]Vinogradov, A.M., Local symmetries and conservation laws (1984) Acta Appl Math, 2, pp. 21-78 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Communications in Nonlinear Science and Numerical Simulation | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | On The Nonlinear Self-adjointness And Local Conservation Laws For A Class Of Evolution Equations Unifying Many Models | |
dc.type | Artículos de revistas | |