dc.creatorFornari J.
dc.creatorEerola T.
dc.date2009
dc.date2015-06-26T13:36:30Z
dc.date2015-11-26T15:36:33Z
dc.date2015-06-26T13:36:30Z
dc.date2015-11-26T15:36:33Z
dc.date.accessioned2018-03-28T22:45:03Z
dc.date.available2018-03-28T22:45:03Z
dc.identifier364202517X; 9783642025174
dc.identifierLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 5493 LNCS, n. , p. 119 - 133, 2009.
dc.identifier3029743
dc.identifier10.1007/978-3-642-02518-1_8
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-68749111173&partnerID=40&md5=851f82ed2b03ac3612f33dd9d884605c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92562
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92562
dc.identifier2-s2.0-68749111173
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263465
dc.descriptionIn the study of music emotions, Valence is usually referred to as one of the dimensions of the circumplex model of emotions that describes music appraisal of happiness, whose scale goes from sad to happy. Nevertheless, related literature shows that Valence is known as being particularly difficult to be predicted by a computational model. As Valence is a contextual music feature, it is assumed here that its prediction should also require contextual music descriptors in its predicting model. This work describes the usage of eight contextual (also known as higher-level) descriptors, previously developed by us, to calculate happiness in music. Each of these descriptors was independently tested using the correlation coefficient of its prediction with the mean rating of Valence, reckoned by thirty-five listeners, over a piece of music. Following, a linear model using this eight descriptors was created and the result of its prediction, for the same piece of music, is described and compared with two other computational models from the literature, designed for the dynamic prediction of music emotion. Finally it is proposed here an initial investigation on the effects of expressive performance and musical structure on the prediction of Valence. Our descriptors are then separated in two groups: performance and structural, where, with each group, we built a linear model. The prediction of Valence given by these two models, over two other pieces of music, are here compared with the correspondent listeners' mean rating of Valence, and the achieved results are depicted, described and discussed. © 2009 Springer Berlin Heidelberg.
dc.description5493 LNCS
dc.description
dc.description119
dc.description133
dc.descriptionSloboda, J.A., Juslin, P., (2001) Music and Emotion: Theory and Research, , Oxford University Press, Oxford
dc.descriptionEkman, P., An argument for basic emotions (1992) Cognition & Emotion, 6 (3-4), pp. 169-200
dc.descriptionJuslin, P.N., Laukka, P., Communication of emotions in vocal expression and music performance: Different channels, same code? (2003) Psychological Bulletin, 129, pp. 770-814
dc.descriptionRussell, J.A., Core affect and the psychological construction of emotion (2003) Psychological Review, 110 (1), pp. 145-172
dc.descriptionLaukka, P., Juslin, P.N., Bresin, R., A dimensional approach to vocal expression of emotion (2005) Cognition and Emotion, 19, pp. 633-653
dc.descriptionScherer, K.R., Zentner, K.R., Emotional effects of music: Production rules (2001) Music and emotion: Theory and research, pp. 361-392. , Juslin, P.N, Sloboda, J.A, eds, Oxford University Press, Oxford
dc.descriptionTzanetakis, G., Cook, P., Musical Genre Classification of Audio Signals (2002) IEEE Transactions on Speech and Audio Processing, 10 (5), pp. 293-302
dc.descriptionLeman, M., Vermeulen, V., De Voogdt, L., Moelants, D., Lesaffre, M.: Correlation of Gestural Musical Audio Cues. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS, 2915, pp. 40-54. Springer, Heidelberg (2004)Wu, T.-L., Jeng, S.-K., Automatic emotion classification of musical segments (2006) Proceedings of the 9th International Conference on Music Perception & Cognition, , Bologna
dc.descriptionGomez, E., Herrera, P., Estimating The Tonality Of Polyphonic Audio Files: Cogtive Versus Machine Learning Modelling Strategiesl (2004) Proceedings of the 5th International ISMIR 2004 Conference, , Paper presented at the, Barcelona, Spain October
dc.descriptionSchubert, E., Measuring emotion continuously: Validity and reliability of the two-dimensional emotion space (1999) Aust. J. Psychol, 51 (3), pp. 154-165
dc.descriptionKorhonen, M., Clausi, D., Jernigan, M., Modeling Emotional Content of Music Using System Identification (2006) IEEE Transactions on Systems, Man and Cybernetics, 36 (3), pp. 588-599
dc.descriptionSlodoba, J.A., Individual differences in music performance (2000) Trends in Cognitive Sciences, 4 (10), pp. 397-403
dc.descriptionPalmer, C., Music Performance (1997) Annual Review of Psychology, 48, pp. 115-138
dc.descriptionGerhard, W., Werner, G., Computational Models of Expressive Music Performance: The State of the Art (2004) Journal of New Music Research, 33 (3), pp. 203-216. , 2004
dc.descriptionFriberg, A., Bresin, R., Sundberg, J., Overview of the KTH rule system for music performance (2006) Advances in Experimental Psychology, 2 (2-3), pp. 145-161. , special issue on Music Performance
dc.descriptionTodd, N.P.M., A computational model of Rubato (1989) Contemporary Music Review, 3, pp. 69-88
dc.descriptionMazzola, G., Göller, S., Performance and interpretation (2002) Journal of New Music Research, 31, pp. 221-232
dc.descriptionWidmer, G., Dixon, S.E., Goebl, W., Pampalk, E., Tobudic, A., Search of the Horowitz factor (2003) AI Magazine, 24, pp. 111-130
dc.descriptionHevner, K., Experimental studies of the elements of expression in music (1936) American Journal of Psychology, 48, pp. 246-268
dc.descriptionGagnon, L., Peretz, I., Mode and tempo relative contributions to "happy - sad" judgments in equitone melodies (2003) Cognition and Emotion, 17, pp. 25-40
dc.descriptionDalla Bella, S., Peretz, I., Rousseau, L., Gosselin, N., A developmental study of the affective value of tempo and mode in music (2001) Cognition, 80 (3), pp. B1-B10
dc.descriptionJuslin, P.N., Cue utilization in communication of emotion in music performance: Relating performance to perception (2000) J. Exp. Psychol. Hum. Percept. Perform, 26 (6), pp. 1797-1813
dc.descriptionBresin, R., Battel, G., Articulation strategies in expressive piano performance (2000) Journal of New Music Research, 29 (3), pp. 211-224
dc.descriptionBeeSuan, O., (2005) Towards Automatic Music Structural Analysis: Identifying Characteristic Within-Song Excerpts in Popular Music, , Doctorate dissertation. Department of Technology, University Pompeu Fabra
dc.languageen
dc.publisher
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsfechado
dc.sourceScopus
dc.titleThe Pursuit Of Happiness In Music: Retrieving Valence With Contextual Music Descriptors
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución