dc.creatorCorbera M.
dc.creatorLlibre J.
dc.creatorTeixeira M.A.
dc.date2009
dc.date2015-06-26T13:36:22Z
dc.date2015-11-26T15:36:26Z
dc.date2015-06-26T13:36:22Z
dc.date2015-11-26T15:36:26Z
dc.date.accessioned2018-03-28T22:44:55Z
dc.date.available2018-03-28T22:44:55Z
dc.identifier
dc.identifierPhysica D: Nonlinear Phenomena. , v. 238, n. 6, p. 699 - 705, 2009.
dc.identifier1672789
dc.identifier10.1016/j.physd.2009.01.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-61449242654&partnerID=40&md5=703875734e6872b1a9163ba679c40c3d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92514
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92514
dc.identifier2-s2.0-61449242654
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263438
dc.descriptionIn this paper, we consider C1 vector fields X in R3 having a "generalized heteroclinic loop" L which is topologically homeomorphic to the union of a 2-dimensional sphere S2 and a diameter Γ connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on Γ. The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincaré map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics. © 2009 Elsevier B.V. All rights reserved.
dc.description238
dc.description6
dc.description699
dc.description705
dc.descriptionLamb, J.S., Teixeira, M.A., Webster, K.N., Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3 (2005) J. Differential Equations, 219, pp. 78-115
dc.descriptionMoser, J., (1973) Stable and Random Motions in Dynamical Systems, , Princeton University Press, Princeton New Jersey
dc.descriptionSmale, S., Differentiable dynamical systems (1967) Bull. Amer. Math. Soc., 73, pp. 747-817
dc.descriptionRobinson, C., (1999) Studies in Advanced Mathematics, , CRC Press, Boca Raton, FL
dc.descriptionCorbera, M., Llibre, J., Generation of symmetric periodic orbits by a heteroclinic loop formed by two singular points and their invariant manifolds of dimension 1 and 2 in R3 (2007) Internat. J. Bifur. Chaos, 17, pp. 3245-3302
dc.descriptionCorbera, M., Llibre, J., Pérez-Chavela, E., Symmetric periodic orbits near a heteroclinic loop formed by two singular points and their invariant manifolds of dimension 1 and 2 (2006) J. Phys. A, 39, pp. 15313-15326
dc.descriptionAlgaba, A., Fernández-Sánchez, F., Freire, E., Merino, M., Rodríguez-Luis, A.J., Nontransversal curves of T-points: A source of closed curves of global bifurcations (2002) Phys. Lett. A, 303, pp. 204-211
dc.descriptionLlibre, J., Ponce, E., Teruel, A., Horseshoes near homoclinic orbits for piecewise linear differential systems in R3 (2007) Internat. J. Bifur. Chaos, 17, pp. 1171-1184
dc.descriptionShil'nikov, L.P., A case of the existence of a denumerable set of periodic motions (1965) Sov. Math. Dokl., 6, pp. 163-166
dc.descriptionShil'nikov, L.P., A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type (1970) Math. USSR Sbornik, 10, pp. 91-102
dc.descriptionShilnikov, L., Turaev, D.V., A new simple bifurcation of a periodic orbit of blue sky catastrophe type. Methods of qualitative theory of differential equations and related topics (2000) Amer. Math. Soc. Transl. Ser. 2, 200, pp. 165-188. , Amer. Math. Soc., Providence, RI
dc.descriptionShilnikov, A., Shilnikov, L., Turaev, D., Blue-sky catastrophe in singularly perturbed systems (2005) Mosc. Math. J., 5, pp. 269-282
dc.descriptionBurke, J., Knobloch, E., Homoclinic snaking: Structure and stability (2007) Chaos, 17, p. 037102. , 15 pp
dc.descriptionBurke, J., Knobloch, E., Localized states in the generalized Swift-Hohenberg equation (2006) Phys. Rev. E (3), 73, p. 056211. , 15 pp
dc.descriptionKnobloch, J., Wagenknecht, T., Homoclinic snaking near a heteroclinic cycle in reversible systems (2005) Physica D, 206, pp. 82-93
dc.descriptionWoods, P.D., Champneys, A.R., Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation (1999) Physica D, 129, pp. 147-170
dc.languageen
dc.publisher
dc.relationPhysica D: Nonlinear Phenomena
dc.rightsfechado
dc.sourceScopus
dc.titleSymmetric Periodic Orbits Near A Heteroclinic Loop In R3 Formed By Two Singular Points, A Semistable Periodic Orbit And Their Invariant Manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución