dc.creatorSeabra A.B.
dc.creatorRai M.
dc.creatorDuran N.
dc.date2014
dc.date2015-06-25T17:50:43Z
dc.date2015-11-26T15:35:59Z
dc.date2015-06-25T17:50:43Z
dc.date2015-11-26T15:35:59Z
dc.date.accessioned2018-03-28T22:44:30Z
dc.date.available2018-03-28T22:44:30Z
dc.identifier
dc.identifierJournal Of Plant Biochemistry And Biotechnology. , v. 23, n. 1, p. 1 - 10, 2014.
dc.identifier9717811
dc.identifier10.1007/s13562-013-0204-z
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84891891841&partnerID=40&md5=1c28e95edc34f5854c204691e75b2cfa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85895
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85895
dc.identifier2-s2.0-84891891841
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263340
dc.descriptionNitric oxide (NO) plays a key role in plant growth and defense. Since NO is a small molecule, devoid of charge and relatively lipophilic, it easily crosses cell membranes, acting as an important signaling messenger. Recently, several papers described the beneficial effects due to application of small molecular weight NO donors in plants. Exogenous NO donors break seed dormancy, stimulate plant germination and greening, control iron homeostasis in plants, and improve plant tolerance to salinity, metal toxicity, temperature and drought stress. However, these NO donors are thermally and photochemically unstable. A promising strategy that has been successfully used in biomedical applications is the combination of NO donors with nanomaterials. The encapsulation of NO donors in nanoparticles/nanotubes is able to control the release of therapeutic amounts of NO, thus improving its beneficial effects. Although nanomaterials have been used successfully to carry agrochemicals in plants, the delivery of NO is still to be studied. In this context, the present review highlights the advantages of applications of NO donors in plants, the uses of nanotechnology in agriculture, and the necessity to develop new strategies based on the combination of NO and nanomaterials in agriculture. Therefore, this review hopes to open up new perspectives in the area of nanobiotechnology, NO and agriculture. © 2013 Society for Plant Biochemistry and Biotechnology.
dc.description23
dc.description1
dc.description1
dc.description10
dc.descriptionAftab, T., Khan, M.M.A., Naeem, M., Idrees, M., Moinuddin, Exogenous nitricoxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity (2012) Ecotoxicol Environ Saf, 80, pp. 60-68
dc.descriptionAlvarez-Puebla, R.A., Ross, D.J., Nazri, G.A., Aroca, R.F., Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance (2005) Langmuir, 21, pp. 10504-10508
dc.descriptionAmadeu, T.P., Seabra, A.B., de Oliveira, M.G., Costa, A.M.A., S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair (2007) J Eur Acad Dermatol Venereol, 21, pp. 629-637
dc.descriptionAmadeu, T.P., Seabra, A.B., de Oliveira, M.G., Costa, A.M.A., Nitric oxide donor improves healing if applied on inflammatory and proliferative phase (2008) J Surg Res, 149, pp. 84-93
dc.descriptionBarik, T.K., Sahu, B., Swain, V., Nanosilica-from medicine to pest control (2008) Parasitol Res, 103, pp. 253-258
dc.descriptionBaudouin, E., The language of nitric oxide signaling (2011) Plant Biol, 13, pp. 233-242
dc.descriptionBavita, A., Shashi, B., Navtej, S.B., Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat (2012) Indian J Exp Biol, 50, pp. 372-378
dc.descriptionBeligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation: three light-inducible responses in plants (2000) Planta, 210, pp. 215-221
dc.descriptionBenini, P.G.Z., McGarvey, B.R., Franco, D.W., Functionalization of PAMAM dendrimers with [Ru-III(EDTA)(H2O)](-) (2008) Nitric Oxide, 19, pp. 245-251
dc.descriptionBesson-Bard, A., Pugin, A., Wendehenne, D., New insights into nitric oxide signaling in plants (2008) Annu Rev Plant Physiol, 59, pp. 21-40
dc.descriptionBewley, J.D., Seed germination and dormancy (1997) Plant Cell, 9, pp. 1055-1066
dc.descriptionCanas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species (2008) Environ Toxicol Chem, 27, pp. 1922-1931
dc.descriptionCarpenter, A.W., Schoenfisch, M.H., Nitric oxide release: Part II. Therapeutic applications (2012) Chem Soc Rev, 41, pp. 3742-3752
dc.descriptionChang, W.L., Shaily, M., Katherine, Z., Li, D., Yu-Chang, T., Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana (2010) Environ Toxicol Chem, 29, pp. 669-675
dc.descriptionCollom, L., Emnanis, D., Wael, H., Anindya, G., (2008) Ruthenium complexes of amido macrocyclic ligands for NO release, , 64th Southwest regional meeting of the American Chemical Society, Abstract
dc.descriptionCorpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress (2011) Plant Sci, 181, pp. 604-611
dc.descriptionde Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, N.H., Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release (2002) J Phys Chem A, 106, pp. 8963-8970
dc.descriptionDing, F., Effects of salinity and nitric oxide donor sodium nitroprusside (SNP) on development and salt secretion of salt glands of Limonium bicolor (2012) Acta Physiol Plant, , doi 10. 1007/s11738-012-1114-8
dc.descriptionDitta, A., How helpful is nanotechnology in agriculture? (2012) Adv Nat Sci Nanosci Nanotechnol, 3, p. 033002
dc.descriptionDuran, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959
dc.descriptionEl-Temsah, Y.S., Joner, E.J., Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil (2010) Environ Toxicol, 27, pp. 42-49
dc.descriptionEva, J.G., Lesley, C.B., Jamie, R.L., Phytotoxicity of silver nanoparticles to Lemna minor L (2011) Environ Pollut, 159, pp. 1551-1559
dc.descriptionFerreira, L.C., Cataneo, A.C., Nitric oxide in plants: a brief discussion on this multifunctional molecule (2010) Sci Agric, 67, pp. 236-243
dc.descriptionGao, Q., Wang, G.J., Wan, A.J., Synthesis and characterization of chitosan-based diazeniumdiolates (2008) Polym Mat Sci Eng, 12
dc.descriptionGarcía-Mata, C., Lamattina, L., Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress (2001) Plant Physiol, 126, pp. 1196-1204
dc.descriptionGniazdowska, A., Krasuska, A., Czajkowska, K., Bogatek, R., Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings (2010) Plant Growth Regul, 61, pp. 75-84
dc.descriptionGomes, A.J., Barbougli, P.A., Espreafico, E.M., Tfouni, E., Trans-[Ru(NO)(NH3)(4)(py)](BF4)(3)center dot H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: cytotoxicity and phototoxicity (2008) J Inorg Biochem, 102, pp. 757-766
dc.descriptionGonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P.S., Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues (2008) Ann Bot, 101, pp. 187-195
dc.descriptionGraziano, M., Beligni, M.V., Lamattina, L., Nitric oxide improves internal iron availability in plants (2002) Plant Physiol, 130, pp. 1852-1859
dc.descriptionGrover, M., Singh, S.R., Venkateswarlu, B., Nanotechnology: scope and limitations in agriculture (2012) Int J Nanotechnol Appl, 2, pp. 10-38
dc.descriptionGupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., The emerging roles of nitric oxide (NO) in plant mitochondria (2011) Plant Sci, 181, pp. 520-526
dc.descriptionGupta, K.J., Fernie, A.R., Kaiser, W.M., van Dongen, J.T., On the origins of nitric oxide (2011) Trends Plant Sci, 16, pp. 160-168
dc.descriptionGupta, K.J., Hincha, D.K., Mur, L.A.J., NO way to treat a cold (2011) New Phytol, 189, pp. 360-363
dc.descriptionHadadd, P.S., Seabra, A.B., Biomedical Applications of Magnetic Nanoparticles (2012) Iron Oxides: Structure, Properties and Applications, pp. 165-188. , N. Gotsiridze-Columbus (Ed.), Nova York: Nova
dc.descriptionHayes, R.T., Owen, D.J., Chauhan, A.S., Pulgam, V.R., (2011) PEHAM dendrimers for use in agriculture, , US Patent 20110230348
dc.descriptionHetrick, E.M., Shin, J.H., Stasko, N.A., Johnson, C.B., Wespe, D.A., Bactericidal efficacy of nitric oxide-releasing silica nanoparticles (2008) ACS Nano, 2, pp. 235-246
dc.descriptionHoltz, R.D., Souza, A.G., Brocchi, M., Martins, D., Duran, N., Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent (2010) Nanotechnology, 21, p. 185102
dc.descriptionHuang, S.L., Kee, P.H., Kim, H., Moody, M.R., Chrzanowski, S.M., Nitric Oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia (2009) J Am Coll Cardiol, 54, pp. 652-659
dc.descriptionIgnarro, L.J., (2000) Nitric Oxide, Biology and Pathobiology, , San Diego: Academic
dc.descriptionKhodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (2009) ACS Nano, 3, pp. 3221-3227
dc.descriptionKim, S.W., Kim, K.S., Lamsal, K., Kim, Y.J., Kim, S.B., An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp (2009) J Microbiol Biotechnol, 19, pp. 760-764
dc.descriptionKlepper, L.A., Evolution of nitrogen oxide gases from herbicide treated plant tissues (1975) WSSA Abstracts, 184, p. 70
dc.descriptionKoehler, J.J., Zhao, J., Jedlicka, S.S., Porterfield, D.M., Rickus, J.L., Compartmentalized nanocomposite for dynamic nitric oxide release (2008) J Phys Chem B, 112, pp. 15086-15093
dc.descriptionLee, W.M., Kwak, J.I., An, Y.J., Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity (2012) Chemosphere, 86, pp. 491-499
dc.descriptionLi, Z.Z., Chen, J.F., Liu, F., Lu, A.Q., Wang, Q., Study of UV shielding properties of novel porous hollow silica nanoparticle carriers for avermectin (2007) Pest Manag Sci, 63, pp. 241-246
dc.descriptionLin, D., Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth (2007) Environ Pollut, 150, pp. 243-250
dc.descriptionLin, C.C., Jih, P.J., Lin, H.H., Lin, J.S., Chang, L.L., Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding (2011) Plant Mol Biol, 77, pp. 235-249
dc.descriptionLin, A., Wang, Y., Tang, J., Xue, P., Li, C., Nitric oxide and orotein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice (2012) Plant Physiol, 158, pp. 451-464
dc.descriptionLiu, Y., Laks, P., Heiden, P., Controlled release of biocides in solid wood. Part 1. Efficacy against Gloeophyllum trabeum, a brown-rot wood decay fungus (2002) J Appl Polym Sci, 86, pp. 596-607
dc.descriptionLiu, Y., Laks, P., Heiden, P., Nanoparticles for the controlled release of fungicides in wood: soil Jar studies using Gloeophyllum trabeum and Trametes versicolor wood decay fungi (2003) Holzforschung, 57, pp. 35-139
dc.descriptionLiu, J., He, S.G., Zhang, Z.Q., Cao, J.P., Lv, P.T., Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers (2009) Postharvest Biol Technol, 54, pp. 59-62
dc.descriptionLiu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Carbon nanotubes as molecular transporters for walled plant cells (2009) Nano Lett, 9, pp. 1007-1010
dc.descriptionLiu, X., Deng, Z., Cheng, H., He, X., Song, S., Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner (2011) Plant Growth Regul, 64, pp. 155-161
dc.descriptionMazumdar, H., Ahmed, G.U., Phytotoxicity effect of silver nanoparticles on Oryza sativa (2011) Int J Chem Tech Res, 3, pp. 1494-1500
dc.descriptionMin, J.S., Kim, S.W., Jung, J.H., Lamsal, K., Bin Kim, S., Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi (2009) Plant Pathol J, 25, pp. 376-380
dc.descriptionMolina, M.M., Seabra, A.B., de Oliveira, M.G., Itri, R., Haddad, P.S., Nitric oxide donor superparamagnetic iron oxide nanoparticles (2013) Mat Sci Eng C-Biomim, 33, pp. 746-751
dc.descriptionMonica, R.C., Cremonini, R., Nanoparticles and higher plants (2009) Caryologia, 62, pp. 161-165
dc.descriptionMusante, C., White, J.C., Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles (2012) Environ Toxicol, 27, pp. 510-517
dc.descriptionNair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Nanoparticulate material delivery to plants (2010) Plant Sci, 179, pp. 154-163
dc.descriptionNavarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi (2008) Revista, 17, pp. 372-386
dc.descriptionParadise, W.A., Vesper, B.J., Goel, A., Waltonen, J.D., Altman, K.W., Nitric Oxide: perspectives and emerging studies of a well known cytotoxin (2010) Int J Mol Sci, 11, pp. 2715-2745
dc.descriptionPark, H.J., Kim, S.H., Kim, H.J., Choi, S.H., A new composition of nanosized silica-silver for control of various plant diseases (2006) Plant Pathol J, 22, pp. 295-302
dc.descriptionPasupathy, K., Lin, S., Hu, Q., Luo, H., Dr, P.C.K., Direct plant gene delivery with a poly (amidoamine) dendrimer (2008) Biotechnol J, 3, pp. 1078-1082
dc.descriptionPerez-De-Luque, A., Rubiales, D., Nanotechnology for parasitic plant control (2009) Pest Manag Sci, 65, pp. 540-545
dc.descriptionPrashanth, K.V.H., Tharanathan, R.N., Chitin/chitosan: modifications and their unlimited application potential - an overview (2007) Trends Food Sci Tech, 18, pp. 117-131
dc.descriptionRacuciu, M., Creanga, D.E., TMA-OH coated magnetic nanoparticles internalized in vegetal tissues (2007) Romanian J Phys, 52, p. 395
dc.descriptionRamirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., Lamattina, L., Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis (2011) Plant Sci, 181, pp. 582-592
dc.descriptionSabo-Attwood, T., Unrine, Stone, J.W., Murphy, C.J., Ghoshroy, S., Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings (2011) Nanotoxicology, , doi: 10. 3109/17435390. 2011. 579631
dc.descriptionSamaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., Endocytosis, actin cytoskeleton, and signaling (2004) Plant Physiol, 135, pp. 1150-1161
dc.descriptionSamuel, J.P., Samboju, N.C., Yau, K.Y., Webb, S.R., Burroughs, F., (2011) Use of dendrimer nanotechnology for delivery of biomolecules into plant cells, , US Patent 20110093982
dc.descriptionSavithramma, N., Ankanna, S., Bhumi, G., Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata-An endemic and endangered medicinal (2012) Tree Taxon Nano Vision, 2, pp. 61-68
dc.descriptionSchoenfisch, M.H., Hetrick, E.M., Stasko, N.A., Johnson, C.B., Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents (2009) PCT Int Appl WO 2 009 049 208
dc.descriptionSeabra, A.B., Nitric oxide-releasing nanomaterials and skin care (2011) Nanocosmetics and Nanomedicines, pp. 253-268. , 1st edn., R. Beck, A. Pohlmann, and S. Guterres (Eds.), New York: Springer
dc.descriptionSeabra, A.B., Durán, N., Nitric oxide-releasing vehicles for biomedical applications (2010) J Mat Chem, 20, pp. 1624-1637
dc.descriptionSeabra, A.B., Durán, N., Nanotechnology allied to nitric oxide release materials for dermatological applications (2012) Curr Nanosci, 8, pp. 520-525
dc.descriptionSeabra, A.B., Fitzpatrick, A., Paul, J., de Oliveira, M.G., Weller, R., Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin (2004) Brit J Dermatol, 151, pp. 977-983
dc.descriptionSeabra, A.B., Pankotai, E., Fecher, M., Somlai, A., Kiss, L., S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats (2007) Brit J Dermatol, 156, pp. 814-818
dc.descriptionSeabra, A.B., da Silva, R., de Souza, G.F.P., de Oliveira, M.G., Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces (2008) Artif Organs, 32, pp. 262-267
dc.descriptionSeabra, A.B., Martins, D.M., da Silva, R., Simões, M.M.S.G., Brocchi, M., Antibacterial nitric oxide polyester for the coating of blood-contacting artificial materials (2010) Artif Organs, 34, pp. E204-E214
dc.descriptionShi, H.T., Li, R.J., Cai, W., Liu, W., Wang, C.L., In vivo role of nitric oxide in plant response to abiotic and biotic stress (2012) Plant Sign Behavior, 7, pp. 438-440
dc.descriptionShin, J.H., Metzger, S.K., Schoenfisch, M.H., Synthesis of nitric oxide-releasing silica nanoparticles (2007) J Am Chem Soc, 129, pp. 4612-4619
dc.descriptionSiddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress (2011) Protoplasma, 248, pp. 447-455
dc.descriptionSimplício, F.I., Seabra, A.B., de Souza, G.F.P., de Oliveira, M.G., In vitro inhibition of linoleic acid peroxidation by primary S-nitrosothiols (2010) J Braz Chem Soc, 21, pp. 1885-1895
dc.descriptionSlowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., Lin, V.S.Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers (2008) Adv Drug Deliv Rev, 60, pp. 1278-1288
dc.descriptionSolgi, M., Kafi, M., Taghavi, T.S., Naderi, R., Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers (2009) Postharvest Biol Technol, 53, pp. 155-158
dc.descriptionSrivastava, S., Dubey, R.S., Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves (2012) Acta Physiol Plant, 34, pp. 819-825
dc.descriptionStampoulis, D., Sinha, S.K., White, J.C., Assay dependent phytotoxicity of nanoparticles to plants (2009) Environ Sci Technol, 43, pp. 9473-9479
dc.descriptionStasko, N.A., Schoenfisch, M.H., Dendrimers as a scaffold for nitric oxide release (2006) J Am Chem Soc, 128, pp. 8265-8271
dc.descriptionStasko, N.A., Fischer, T.H., Schoenfisch, M.H., S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles (2008) Biomacromolecules, 9, pp. 834-841
dc.descriptionTaladriz-Blanco, P., Rodriguez-Lorenzo, L., Sanles-Sobrido, M., Herve, P., Correa-Duarte, M.A., SERS study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes (2009) ACS Appl Mater Interf, 1, pp. 56-59
dc.descriptionTan, J., Zhao, H., Hong, J., Han, Y., Li, H., Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress (2008) World J Agricul Sci, 4, pp. 307-313
dc.descriptionTaylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J., Liposomal nanocapsules in food science and agriculture (2005) Crit Ver Food Sci Nutr, 45, pp. 587-605
dc.descriptionTorney, F., Trewyn, B.G., Lin, V.S.Y., Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants (2007) Nature Nanotechnol, l2, pp. 295-300
dc.descriptionTrotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A., Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea (2006) Eur J Plant Pathol, 114, pp. 405-413
dc.descriptionWang, S.H., Zhang, H., Jianga, S.J., Zhang, L., He, Q.Y., Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress (2010) Russ J Plant Physiol, 57, pp. 833-839
dc.descriptionWendehenne, D., Hancock, J.T., New frontiers in nitric oxide biology in plant (2011) Plant Sci, 181, pp. 507-508
dc.descriptionWiesman, Z., Ben Dom, N., Sharvit, E., Grinberg, S., Linder, C., Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes (2007) J Biotechnol, 130, pp. 85-94
dc.descriptionYoo, J., C Lee, C., (2006), http://www.aapsj.org/abstracts/AM_2006/staged/AAPS,001991.PDFZhang, L., Wang, Y., Zhao, L., Shi, S., Zhang, L., Involvement of nitric oxide in light-mediated greening of barley seedlings (2006) J Plant Phys, 163, pp. 818-826
dc.descriptionZhang, X.Y., Dong, Y.J., Qiu, X.K., Hu, G.Q., Wang, Y.H., Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil (2012) Plant Soil Environ, 58, pp. 111-120
dc.descriptionZheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity (2009) Environ Exp Bot, 67, pp. 222-227
dc.descriptionZhu, H., Han, J., Xiao, J.Q., Jin, Y., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants (2008) J Environ Monitor, 10, pp. 713-717
dc.descriptionZhukovskii, V.A., Problems and prospects for development and production of surgical suture materials (2008) Fibre Chem, 40, pp. 208-216
dc.languageen
dc.publisher
dc.relationJournal of Plant Biochemistry and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleNano Carriers For Nitric Oxide Delivery And Its Potential Applications In Plant Physiological Process: A Mini Review
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución