dc.creator | Seabra A.B. | |
dc.creator | Rai M. | |
dc.creator | Duran N. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:50:43Z | |
dc.date | 2015-11-26T15:35:59Z | |
dc.date | 2015-06-25T17:50:43Z | |
dc.date | 2015-11-26T15:35:59Z | |
dc.date.accessioned | 2018-03-28T22:44:30Z | |
dc.date.available | 2018-03-28T22:44:30Z | |
dc.identifier | | |
dc.identifier | Journal Of Plant Biochemistry And Biotechnology. , v. 23, n. 1, p. 1 - 10, 2014. | |
dc.identifier | 9717811 | |
dc.identifier | 10.1007/s13562-013-0204-z | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84891891841&partnerID=40&md5=1c28e95edc34f5854c204691e75b2cfa | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85895 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85895 | |
dc.identifier | 2-s2.0-84891891841 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263340 | |
dc.description | Nitric oxide (NO) plays a key role in plant growth and defense. Since NO is a small molecule, devoid of charge and relatively lipophilic, it easily crosses cell membranes, acting as an important signaling messenger. Recently, several papers described the beneficial effects due to application of small molecular weight NO donors in plants. Exogenous NO donors break seed dormancy, stimulate plant germination and greening, control iron homeostasis in plants, and improve plant tolerance to salinity, metal toxicity, temperature and drought stress. However, these NO donors are thermally and photochemically unstable. A promising strategy that has been successfully used in biomedical applications is the combination of NO donors with nanomaterials. The encapsulation of NO donors in nanoparticles/nanotubes is able to control the release of therapeutic amounts of NO, thus improving its beneficial effects. Although nanomaterials have been used successfully to carry agrochemicals in plants, the delivery of NO is still to be studied. In this context, the present review highlights the advantages of applications of NO donors in plants, the uses of nanotechnology in agriculture, and the necessity to develop new strategies based on the combination of NO and nanomaterials in agriculture. Therefore, this review hopes to open up new perspectives in the area of nanobiotechnology, NO and agriculture. © 2013 Society for Plant Biochemistry and Biotechnology. | |
dc.description | 23 | |
dc.description | 1 | |
dc.description | 1 | |
dc.description | 10 | |
dc.description | Aftab, T., Khan, M.M.A., Naeem, M., Idrees, M., Moinuddin, Exogenous nitricoxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity (2012) Ecotoxicol Environ Saf, 80, pp. 60-68 | |
dc.description | Alvarez-Puebla, R.A., Ross, D.J., Nazri, G.A., Aroca, R.F., Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance (2005) Langmuir, 21, pp. 10504-10508 | |
dc.description | Amadeu, T.P., Seabra, A.B., de Oliveira, M.G., Costa, A.M.A., S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair (2007) J Eur Acad Dermatol Venereol, 21, pp. 629-637 | |
dc.description | Amadeu, T.P., Seabra, A.B., de Oliveira, M.G., Costa, A.M.A., Nitric oxide donor improves healing if applied on inflammatory and proliferative phase (2008) J Surg Res, 149, pp. 84-93 | |
dc.description | Barik, T.K., Sahu, B., Swain, V., Nanosilica-from medicine to pest control (2008) Parasitol Res, 103, pp. 253-258 | |
dc.description | Baudouin, E., The language of nitric oxide signaling (2011) Plant Biol, 13, pp. 233-242 | |
dc.description | Bavita, A., Shashi, B., Navtej, S.B., Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat (2012) Indian J Exp Biol, 50, pp. 372-378 | |
dc.description | Beligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation: three light-inducible responses in plants (2000) Planta, 210, pp. 215-221 | |
dc.description | Benini, P.G.Z., McGarvey, B.R., Franco, D.W., Functionalization of PAMAM dendrimers with [Ru-III(EDTA)(H2O)](-) (2008) Nitric Oxide, 19, pp. 245-251 | |
dc.description | Besson-Bard, A., Pugin, A., Wendehenne, D., New insights into nitric oxide signaling in plants (2008) Annu Rev Plant Physiol, 59, pp. 21-40 | |
dc.description | Bewley, J.D., Seed germination and dormancy (1997) Plant Cell, 9, pp. 1055-1066 | |
dc.description | Canas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species (2008) Environ Toxicol Chem, 27, pp. 1922-1931 | |
dc.description | Carpenter, A.W., Schoenfisch, M.H., Nitric oxide release: Part II. Therapeutic applications (2012) Chem Soc Rev, 41, pp. 3742-3752 | |
dc.description | Chang, W.L., Shaily, M., Katherine, Z., Li, D., Yu-Chang, T., Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana (2010) Environ Toxicol Chem, 29, pp. 669-675 | |
dc.description | Collom, L., Emnanis, D., Wael, H., Anindya, G., (2008) Ruthenium complexes of amido macrocyclic ligands for NO release, , 64th Southwest regional meeting of the American Chemical Society, Abstract | |
dc.description | Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress (2011) Plant Sci, 181, pp. 604-611 | |
dc.description | de Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, N.H., Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release (2002) J Phys Chem A, 106, pp. 8963-8970 | |
dc.description | Ding, F., Effects of salinity and nitric oxide donor sodium nitroprusside (SNP) on development and salt secretion of salt glands of Limonium bicolor (2012) Acta Physiol Plant, , doi 10. 1007/s11738-012-1114-8 | |
dc.description | Ditta, A., How helpful is nanotechnology in agriculture? (2012) Adv Nat Sci Nanosci Nanotechnol, 3, p. 033002 | |
dc.description | Duran, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959 | |
dc.description | El-Temsah, Y.S., Joner, E.J., Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil (2010) Environ Toxicol, 27, pp. 42-49 | |
dc.description | Eva, J.G., Lesley, C.B., Jamie, R.L., Phytotoxicity of silver nanoparticles to Lemna minor L (2011) Environ Pollut, 159, pp. 1551-1559 | |
dc.description | Ferreira, L.C., Cataneo, A.C., Nitric oxide in plants: a brief discussion on this multifunctional molecule (2010) Sci Agric, 67, pp. 236-243 | |
dc.description | Gao, Q., Wang, G.J., Wan, A.J., Synthesis and characterization of chitosan-based diazeniumdiolates (2008) Polym Mat Sci Eng, 12 | |
dc.description | García-Mata, C., Lamattina, L., Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress (2001) Plant Physiol, 126, pp. 1196-1204 | |
dc.description | Gniazdowska, A., Krasuska, A., Czajkowska, K., Bogatek, R., Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings (2010) Plant Growth Regul, 61, pp. 75-84 | |
dc.description | Gomes, A.J., Barbougli, P.A., Espreafico, E.M., Tfouni, E., Trans-[Ru(NO)(NH3)(4)(py)](BF4)(3)center dot H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: cytotoxicity and phototoxicity (2008) J Inorg Biochem, 102, pp. 757-766 | |
dc.description | Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P.S., Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues (2008) Ann Bot, 101, pp. 187-195 | |
dc.description | Graziano, M., Beligni, M.V., Lamattina, L., Nitric oxide improves internal iron availability in plants (2002) Plant Physiol, 130, pp. 1852-1859 | |
dc.description | Grover, M., Singh, S.R., Venkateswarlu, B., Nanotechnology: scope and limitations in agriculture (2012) Int J Nanotechnol Appl, 2, pp. 10-38 | |
dc.description | Gupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., The emerging roles of nitric oxide (NO) in plant mitochondria (2011) Plant Sci, 181, pp. 520-526 | |
dc.description | Gupta, K.J., Fernie, A.R., Kaiser, W.M., van Dongen, J.T., On the origins of nitric oxide (2011) Trends Plant Sci, 16, pp. 160-168 | |
dc.description | Gupta, K.J., Hincha, D.K., Mur, L.A.J., NO way to treat a cold (2011) New Phytol, 189, pp. 360-363 | |
dc.description | Hadadd, P.S., Seabra, A.B., Biomedical Applications of Magnetic Nanoparticles (2012) Iron Oxides: Structure, Properties and Applications, pp. 165-188. , N. Gotsiridze-Columbus (Ed.), Nova York: Nova | |
dc.description | Hayes, R.T., Owen, D.J., Chauhan, A.S., Pulgam, V.R., (2011) PEHAM dendrimers for use in agriculture, , US Patent 20110230348 | |
dc.description | Hetrick, E.M., Shin, J.H., Stasko, N.A., Johnson, C.B., Wespe, D.A., Bactericidal efficacy of nitric oxide-releasing silica nanoparticles (2008) ACS Nano, 2, pp. 235-246 | |
dc.description | Holtz, R.D., Souza, A.G., Brocchi, M., Martins, D., Duran, N., Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent (2010) Nanotechnology, 21, p. 185102 | |
dc.description | Huang, S.L., Kee, P.H., Kim, H., Moody, M.R., Chrzanowski, S.M., Nitric Oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia (2009) J Am Coll Cardiol, 54, pp. 652-659 | |
dc.description | Ignarro, L.J., (2000) Nitric Oxide, Biology and Pathobiology, , San Diego: Academic | |
dc.description | Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (2009) ACS Nano, 3, pp. 3221-3227 | |
dc.description | Kim, S.W., Kim, K.S., Lamsal, K., Kim, Y.J., Kim, S.B., An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp (2009) J Microbiol Biotechnol, 19, pp. 760-764 | |
dc.description | Klepper, L.A., Evolution of nitrogen oxide gases from herbicide treated plant tissues (1975) WSSA Abstracts, 184, p. 70 | |
dc.description | Koehler, J.J., Zhao, J., Jedlicka, S.S., Porterfield, D.M., Rickus, J.L., Compartmentalized nanocomposite for dynamic nitric oxide release (2008) J Phys Chem B, 112, pp. 15086-15093 | |
dc.description | Lee, W.M., Kwak, J.I., An, Y.J., Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity (2012) Chemosphere, 86, pp. 491-499 | |
dc.description | Li, Z.Z., Chen, J.F., Liu, F., Lu, A.Q., Wang, Q., Study of UV shielding properties of novel porous hollow silica nanoparticle carriers for avermectin (2007) Pest Manag Sci, 63, pp. 241-246 | |
dc.description | Lin, D., Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth (2007) Environ Pollut, 150, pp. 243-250 | |
dc.description | Lin, C.C., Jih, P.J., Lin, H.H., Lin, J.S., Chang, L.L., Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding (2011) Plant Mol Biol, 77, pp. 235-249 | |
dc.description | Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Nitric oxide and orotein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice (2012) Plant Physiol, 158, pp. 451-464 | |
dc.description | Liu, Y., Laks, P., Heiden, P., Controlled release of biocides in solid wood. Part 1. Efficacy against Gloeophyllum trabeum, a brown-rot wood decay fungus (2002) J Appl Polym Sci, 86, pp. 596-607 | |
dc.description | Liu, Y., Laks, P., Heiden, P., Nanoparticles for the controlled release of fungicides in wood: soil Jar studies using Gloeophyllum trabeum and Trametes versicolor wood decay fungi (2003) Holzforschung, 57, pp. 35-139 | |
dc.description | Liu, J., He, S.G., Zhang, Z.Q., Cao, J.P., Lv, P.T., Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers (2009) Postharvest Biol Technol, 54, pp. 59-62 | |
dc.description | Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Carbon nanotubes as molecular transporters for walled plant cells (2009) Nano Lett, 9, pp. 1007-1010 | |
dc.description | Liu, X., Deng, Z., Cheng, H., He, X., Song, S., Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner (2011) Plant Growth Regul, 64, pp. 155-161 | |
dc.description | Mazumdar, H., Ahmed, G.U., Phytotoxicity effect of silver nanoparticles on Oryza sativa (2011) Int J Chem Tech Res, 3, pp. 1494-1500 | |
dc.description | Min, J.S., Kim, S.W., Jung, J.H., Lamsal, K., Bin Kim, S., Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi (2009) Plant Pathol J, 25, pp. 376-380 | |
dc.description | Molina, M.M., Seabra, A.B., de Oliveira, M.G., Itri, R., Haddad, P.S., Nitric oxide donor superparamagnetic iron oxide nanoparticles (2013) Mat Sci Eng C-Biomim, 33, pp. 746-751 | |
dc.description | Monica, R.C., Cremonini, R., Nanoparticles and higher plants (2009) Caryologia, 62, pp. 161-165 | |
dc.description | Musante, C., White, J.C., Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles (2012) Environ Toxicol, 27, pp. 510-517 | |
dc.description | Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Nanoparticulate material delivery to plants (2010) Plant Sci, 179, pp. 154-163 | |
dc.description | Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi (2008) Revista, 17, pp. 372-386 | |
dc.description | Paradise, W.A., Vesper, B.J., Goel, A., Waltonen, J.D., Altman, K.W., Nitric Oxide: perspectives and emerging studies of a well known cytotoxin (2010) Int J Mol Sci, 11, pp. 2715-2745 | |
dc.description | Park, H.J., Kim, S.H., Kim, H.J., Choi, S.H., A new composition of nanosized silica-silver for control of various plant diseases (2006) Plant Pathol J, 22, pp. 295-302 | |
dc.description | Pasupathy, K., Lin, S., Hu, Q., Luo, H., Dr, P.C.K., Direct plant gene delivery with a poly (amidoamine) dendrimer (2008) Biotechnol J, 3, pp. 1078-1082 | |
dc.description | Perez-De-Luque, A., Rubiales, D., Nanotechnology for parasitic plant control (2009) Pest Manag Sci, 65, pp. 540-545 | |
dc.description | Prashanth, K.V.H., Tharanathan, R.N., Chitin/chitosan: modifications and their unlimited application potential - an overview (2007) Trends Food Sci Tech, 18, pp. 117-131 | |
dc.description | Racuciu, M., Creanga, D.E., TMA-OH coated magnetic nanoparticles internalized in vegetal tissues (2007) Romanian J Phys, 52, p. 395 | |
dc.description | Ramirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., Lamattina, L., Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis (2011) Plant Sci, 181, pp. 582-592 | |
dc.description | Sabo-Attwood, T., Unrine, Stone, J.W., Murphy, C.J., Ghoshroy, S., Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings (2011) Nanotoxicology, , doi: 10. 3109/17435390. 2011. 579631 | |
dc.description | Samaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., Endocytosis, actin cytoskeleton, and signaling (2004) Plant Physiol, 135, pp. 1150-1161 | |
dc.description | Samuel, J.P., Samboju, N.C., Yau, K.Y., Webb, S.R., Burroughs, F., (2011) Use of dendrimer nanotechnology for delivery of biomolecules into plant cells, , US Patent 20110093982 | |
dc.description | Savithramma, N., Ankanna, S., Bhumi, G., Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata-An endemic and endangered medicinal (2012) Tree Taxon Nano Vision, 2, pp. 61-68 | |
dc.description | Schoenfisch, M.H., Hetrick, E.M., Stasko, N.A., Johnson, C.B., Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents (2009) PCT Int Appl WO 2 009 049 208 | |
dc.description | Seabra, A.B., Nitric oxide-releasing nanomaterials and skin care (2011) Nanocosmetics and Nanomedicines, pp. 253-268. , 1st edn., R. Beck, A. Pohlmann, and S. Guterres (Eds.), New York: Springer | |
dc.description | Seabra, A.B., Durán, N., Nitric oxide-releasing vehicles for biomedical applications (2010) J Mat Chem, 20, pp. 1624-1637 | |
dc.description | Seabra, A.B., Durán, N., Nanotechnology allied to nitric oxide release materials for dermatological applications (2012) Curr Nanosci, 8, pp. 520-525 | |
dc.description | Seabra, A.B., Fitzpatrick, A., Paul, J., de Oliveira, M.G., Weller, R., Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin (2004) Brit J Dermatol, 151, pp. 977-983 | |
dc.description | Seabra, A.B., Pankotai, E., Fecher, M., Somlai, A., Kiss, L., S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats (2007) Brit J Dermatol, 156, pp. 814-818 | |
dc.description | Seabra, A.B., da Silva, R., de Souza, G.F.P., de Oliveira, M.G., Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces (2008) Artif Organs, 32, pp. 262-267 | |
dc.description | Seabra, A.B., Martins, D.M., da Silva, R., Simões, M.M.S.G., Brocchi, M., Antibacterial nitric oxide polyester for the coating of blood-contacting artificial materials (2010) Artif Organs, 34, pp. E204-E214 | |
dc.description | Shi, H.T., Li, R.J., Cai, W., Liu, W., Wang, C.L., In vivo role of nitric oxide in plant response to abiotic and biotic stress (2012) Plant Sign Behavior, 7, pp. 438-440 | |
dc.description | Shin, J.H., Metzger, S.K., Schoenfisch, M.H., Synthesis of nitric oxide-releasing silica nanoparticles (2007) J Am Chem Soc, 129, pp. 4612-4619 | |
dc.description | Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress (2011) Protoplasma, 248, pp. 447-455 | |
dc.description | Simplício, F.I., Seabra, A.B., de Souza, G.F.P., de Oliveira, M.G., In vitro inhibition of linoleic acid peroxidation by primary S-nitrosothiols (2010) J Braz Chem Soc, 21, pp. 1885-1895 | |
dc.description | Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., Lin, V.S.Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers (2008) Adv Drug Deliv Rev, 60, pp. 1278-1288 | |
dc.description | Solgi, M., Kafi, M., Taghavi, T.S., Naderi, R., Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers (2009) Postharvest Biol Technol, 53, pp. 155-158 | |
dc.description | Srivastava, S., Dubey, R.S., Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves (2012) Acta Physiol Plant, 34, pp. 819-825 | |
dc.description | Stampoulis, D., Sinha, S.K., White, J.C., Assay dependent phytotoxicity of nanoparticles to plants (2009) Environ Sci Technol, 43, pp. 9473-9479 | |
dc.description | Stasko, N.A., Schoenfisch, M.H., Dendrimers as a scaffold for nitric oxide release (2006) J Am Chem Soc, 128, pp. 8265-8271 | |
dc.description | Stasko, N.A., Fischer, T.H., Schoenfisch, M.H., S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles (2008) Biomacromolecules, 9, pp. 834-841 | |
dc.description | Taladriz-Blanco, P., Rodriguez-Lorenzo, L., Sanles-Sobrido, M., Herve, P., Correa-Duarte, M.A., SERS study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes (2009) ACS Appl Mater Interf, 1, pp. 56-59 | |
dc.description | Tan, J., Zhao, H., Hong, J., Han, Y., Li, H., Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress (2008) World J Agricul Sci, 4, pp. 307-313 | |
dc.description | Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J., Liposomal nanocapsules in food science and agriculture (2005) Crit Ver Food Sci Nutr, 45, pp. 587-605 | |
dc.description | Torney, F., Trewyn, B.G., Lin, V.S.Y., Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants (2007) Nature Nanotechnol, l2, pp. 295-300 | |
dc.description | Trotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A., Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea (2006) Eur J Plant Pathol, 114, pp. 405-413 | |
dc.description | Wang, S.H., Zhang, H., Jianga, S.J., Zhang, L., He, Q.Y., Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress (2010) Russ J Plant Physiol, 57, pp. 833-839 | |
dc.description | Wendehenne, D., Hancock, J.T., New frontiers in nitric oxide biology in plant (2011) Plant Sci, 181, pp. 507-508 | |
dc.description | Wiesman, Z., Ben Dom, N., Sharvit, E., Grinberg, S., Linder, C., Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes (2007) J Biotechnol, 130, pp. 85-94 | |
dc.description | Yoo, J., C Lee, C., (2006), http://www.aapsj.org/abstracts/AM_2006/staged/AAPS,001991.PDFZhang, L., Wang, Y., Zhao, L., Shi, S., Zhang, L., Involvement of nitric oxide in light-mediated greening of barley seedlings (2006) J Plant Phys, 163, pp. 818-826 | |
dc.description | Zhang, X.Y., Dong, Y.J., Qiu, X.K., Hu, G.Q., Wang, Y.H., Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil (2012) Plant Soil Environ, 58, pp. 111-120 | |
dc.description | Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity (2009) Environ Exp Bot, 67, pp. 222-227 | |
dc.description | Zhu, H., Han, J., Xiao, J.Q., Jin, Y., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants (2008) J Environ Monitor, 10, pp. 713-717 | |
dc.description | Zhukovskii, V.A., Problems and prospects for development and production of surgical suture materials (2008) Fibre Chem, 40, pp. 208-216 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Plant Biochemistry and Biotechnology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Nano Carriers For Nitric Oxide Delivery And Its Potential Applications In Plant Physiological Process: A Mini Review | |
dc.type | Artículos de revistas | |