Artículos de revistas
The Brain Is The Conductor: Diet-induced Inflammation Overlapping Physiological Control Of Body Mass And Metabolism [o Cérebro é O Maestro: Inflamação Induzida Por Dieta Interfere No Controle Fisiológico Da Adiposidade Corporal E Do Metabolismo]
Registro en:
Arquivos Brasileiros De Endocrinologia E Metabologia. , v. 53, n. 2, p. 151 - 158, 2009.
42730
2-s2.0-67649394417
Autor
Velloso L.A.
Institución
Resumen
Obesity is currently a worldwide pandemic. It affects more than 300 million humans and it will probably increase over the next 20 years. The consumption of calorie-rich foods is responsible for most of the obesity cases, but not all humans exposed to high-calorie diets develop the disease. This fact has prompted researchers to investigate the mechanisms linking the consumption of high-calorie diets to the generation of an imbalance between energy intake and expenditure. According to recent studies, the exposure to fat-rich diets induces an inflammatory response in the hypothalamic areas involved in the control of feeding and thermogenesis. The inflammatory process damages the neuronal circuitries that maintain the homeostatic control of the body's energy stores, therefore favoring body mass gain. This review will focus on the main advances obtained in this field. 53 2 151 158 Kopelman, P.G., Obesity as a medical problem (2000) Nature, 404 (6778), pp. 635-643 Farooqi, S., O'Rahilly, S., Genetics of obesity in humans (2006) Endocr Rev, 27 (7), pp. 710-718 Galgani, J., Ravussin, E., Energy metabolism, fuel selection and body weight regulation (2008) Int J Obes (Lond), 32 (SUPPL. 7), pp. S109-S119 Velloso, L.A., Araujo, E.P., de Souza, C.T., Diet-induced inflammation of the hypothalamus in obesity (2008) Neuroimmunomodulation, 15 (3), pp. 189-193 de Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus (2005) Endocrinology, 146 (10), pp. 4192-4199 Milanski, M., Degasperi, G., Coope, A., Morari, J., Denis, R., Cintra, D.E., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity (2009) J Neurosci, 29 (2), pp. 359-370 Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., Cai, D., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135 (1), pp. 61-73 Yang, L., Hotamisligil, G.S., Stressing the brain, fattening the body (2008) Cell, 135 (1), pp. 20-22 Flier, J.S., Maratos-Flier, E., Obesity and the hypothalamus: Novel peptides for new pathways (1998) Cell, 92 (4), pp. 437-440 Schwartz, M.W., Woods, S.C., Porte Jr., D., Seeley, R.J., Baskin, D.G., Central nervous system control of food intake (2000) Nature, 404, pp. 661-671 Horvath, T.L., The hardship of obesity: A soft-wired hypothalamus (2005) Nat Neurosci, 8 (5), pp. 561-565 Cone, R.D., Anatomy and regulation of the central melanocortin system (2005) Nat Neurosci, 8 (5), pp. 571-578 Badman, M.K., Flier, J.S., The gut and energy balance: Visceral allies in the obesity wars (2005) Science, 307 (5717), pp. 1909-1914 Pereira-da-Silva, M., Torsoni, M.A., Nourani, H.V., Augusto, V.D., Souza, C.T., Gasparetti, A.L., Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats (2003) Endocrinology, 144 (11), pp. 4831-4840 Qu, D., Ludwig, D.S., Gammeltoft, S., Piper, M., Pelleymounter, M.A., Cullen, M.J., A role for melanin-concentrating hormone in the central regulation of feeding behaviour (1996) Nature, 380 (6571), pp. 243-247 Shimada, M., Tritos, N.A., Lowell, B.B., Flier, J.S., Maratos-Flier, E., Mice lacking melanin-concentrating hormone are hypophagic and lean (1998) Nature, 396 (6712), pp. 670-674 Marsh, D.J., Weingarth, D.T., Novi, D.E., Chen, H.Y., Trumbauer, M.E., Chen, A.S., Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism (2002) Proc Natl Acad Sci U S A, 99 (5), pp. 3240-3245 Chemelli, R.M., Willie, J.T., Sinton, C.M., Elmquist, J.K., Scammell, T., Lee, C., Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation (1999) Cell, 98 (4), pp. 437-451 Farr, S.A., Banks, W.A., Kumar, V.B., Morley, J.E., Orexin-A-induced feeding is dependent on nitric oxide (2005) Peptides, 26 (5), pp. 759-755 Appel, N.M., Owens, M.J., Culp, S., Zaczek, R., Contrera, J.F., Bissette, G., Role for brain corticotropin-releasing factor in the weightreducing effects of chronic fenfluramine treatment in rats (1991) Endocrinology, 128 (6), pp. 3237-3246 Schuhler, S., Warner, A., Finney, N., Bennett, G.W., Ebling, F.J., Brameld, J.M., Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters (2007) J Neuroendocrinol, 19 (4), pp. 239-249 Fekete, C., Lechan, R.M., Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: Role of neuronal afferents and type 2 deiodinase (2007) Front Neuroendocrinol, 28 (2-3), pp. 97-114 Valassi, E., Scacchi, M., Cavagnini, F., Neuroendocrine control of food intake (2008) Nutr Metab Cardiovasc Dis, 18 (2), pp. 158-168 Nicholson, R.C., King, B.R., Smith, R., Complex regulatory interactions control CRH gene expression (2004) Front Biosci, 9, pp. 32-39 Sarkar, S., Fekete, C., Legradi, G., Lechan, R.M., Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus (2003) Brain Res, 985 (2), pp. 163-168 Solinas, G., Summermatter, S., Mainieri, D., Gubler, M., Montani, J.P., Seydoux, J., Corticotropin-releasing hormone directly stimulates thermogenesis in skeletal muscle possibly through substrate cycling between de novo lipogenesis and lipid oxidation (2006) Endocrinology, 147 (1), pp. 31-38 Waldbillig, R.J., Bartness, T.J., Stanley, B.G., Increased food intake, body weight, and adiposity in rats after regional neurochemical depletion of serotonin (1981) J Comp Physiol Psychol, 95 (3), pp. 391-405 Leibowitz, S.F., Miller, N.E., Unexpected adrenergic effects of chlorpromazine: Eating elicited by injection into rat hypothalamus (1969) Science, 165 (893), pp. 609-611 Mancini, M.C., Halpern, A., Pharmacological treatment of obesity (2006) Arq Bras Endocrinol Metabol, 50 (2), pp. 377-389 di Marzo, V., Matias, I., Endocannabinoid control of food intake and energy balance (2005) Nat Neurosci, 8 (5), pp. 585-589 Vinod, K.Y., Hungund, B.L., Role of the endocannabinoid system in depression and suicide (2006) Trends Pharmacol Sci, 27 (10), pp. 539-545 Myers, M.G., Cowley, M.A., Munzberg, H., Mechanisms of leptin action and leptin resistance (2008) Annu Rev Physiol, 70, pp. 537-556 Seufert, J., Kieffer, T.J., Habener, J.F., Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice (1999) Proc Natl Acad Sci U S A, 96 (2), pp. 674-679 Barzilai, N., Wang, J., Massilon, D., Vuguin, P., Hawkins, M., Rossetti, L., Leptin selectively decreases visceral adiposity and enhances insulin action (1997) J Clin Invest, 100 (12), pp. 3105-3110 Mansour, E., Pereira, F.G., Araujo, E.P., Amaral, M.E., Morari, J., Ferraroni, N.R., Ferreira, D.S., Leptin inhibits apoptosis in thymus through a janus kinase-2-independent, insulin receptor substrate-1/phosphatidylinositol-3 kinase-dependent pathway (2006) Endocrinology, 147 (11), pp. 5470-5479 Matarese, G., la Cava, A., The intricate interface between immune system and metabolism (2004) Trends Immunol, 25 (4), pp. 193-200 Munzberg, H., Myers Jr., M.G., Molecular and anatomical determinants of central leptin resistance (2005) Nat Neurosci, 8 (5), pp. 566-570 Carvalheira, J.B., Siloto, R.M., Ignacchitti, I., Brenelli, S.L., Carvalho, C.R., Leite, A., Insulin modulates leptin-induced STAT3 activation in rat hypothalamus (2001) FEBS Lett, 500 (3), pp. 119-124 Niswender, K.D., Baskin, D.G., Schwartz, M.W., Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis (2004) Trends Endocrinol Metab, 15 (8), pp. 362-369 Plum, L., Ma, X., Hampel, B., Balthasar, N., Coppari, R., Munzberg, H., Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity (2006) J Clin Invest, 116 (7), pp. 1886-1901 Bertelli, D.F., Araujo, E.P., Cesquini, M., Stoppa, G.R., Gasparotto-Contessotto, M., Toyama, M.H., Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits inositide trisphosphate accumulation in hypothalamus and regulates food intake and body weight (2006) Endocrinology, 147 (11), pp. 5385-5399 Hayes, M.R., Skibicka, K.P., Bence, K.K., Grill, H.J., Dorsal hindbrain AMP-Kinase as an intracellular mediator of energy balance (2008) Endocrinology Margolis, R.U., Altszuler, N., Insulin in the cerebrospinal fluid (1967) Nature, 215 (5108), pp. 1375-1376 Air, E.L., Benoit, S.C., Clegg, D.J., Seeley, R.J., Woods, S.C., Insulin and leptin combined additively to reduce food intake and body weight in rats (2002) Endocrinology, 143 (6), pp. 2449-2452 Torsoni, M.A., Carvalheira, J.B., Pereira-Da-Silva, M., de Carvalho-Filho, M.A., Saad, M.J., Velloso, L.A., Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold (2003) Am J Physiol Endocrinol Metab, 285 (1), pp. E216-E223 Bruning, J.C., Gautam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Role of brain insulin receptor in control of body weight and reproduction (2000) Science, 289 (5487), pp. 2122-2125 Cohen, D.A., Obesity and the built environment: Changes in environmental cues cause energy imbalances (2008) Int J Obes (Lond), 32 (SUPPL. 7), pp. S137-S142 Ogden, C.L., Yanovski, S.Z., Carroll, M.D., Flegal, K.M., The epidemiology of obesity (2007) Gastroenterology, 132 (6), pp. 2087-2102 Damiao, R., Castro, T.G., Cardoso, M.A., Gimeno, S.G., Ferreira, S.R., Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry (2006) Br J Nutr, 96 (3), pp. 532-538 de Souza, C.T., Pereira-da-Silva, M., Araujo, E.P., Morari, J., Alvarez-Rojas, F., Bordin, S., Distinct subsets of hypothalamic genes are modulated by two different thermogenesis-inducing stimuli (2008) Obesity (Silver Spring), 16 (6), pp. 1239-1247 Zhang, K., Kaufman, R.J., From endoplasmic-reticulum stress to the inflammatory response (2008) Nature, 454 (7203), pp. 455-462 Xu, C., Bailly-Maitre, B., Reed, J.C., Endoplasmic reticulum stress: Cell life and death decisions (2005) J Clin Invest, 115 (10), pp. 2656-2664 Schroder, M., Kaufman, R.J., ER stress and the unfolded protein response (2005) Mutat Res, 569 (1-2), pp. 29-63 Krappmann, D., Wegener, E., Sunami, Y., Esen, M., Thiel, A., Mordmuller, B., The IkappaB kinase complex and NF-kappaB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1 (2004) Mol Cell Biol, 24 (14), pp. 6488-6500 Marciniak, S.J., Ron, D., Endoplasmic reticulum stress signaling in disease (2006) Physiol Rev, 86 (4), pp. 1133-1149 Prattali, R.R., Barreiro, G.C., Caliseo, C.T., Fugiwara, F.Y., Ueno, M., Prada, P.O., Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in growth hormone treated animals (2005) FEBS Lett, 579 (14), pp. 3152-3158 Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E., Flier, J.S., Identification of SOCS-3 as a potential mediator of central leptin resistance (1998) Mol Cell, 1 (4), pp. 619-625 Munzberg, H., Flier, J.S., Bjorbaek, C., Region-specific leptin resistance within the hypothalamus of diet-induced obese mice (2004) Endocrinology, 145 (11), pp. 4880-4889 Picardi, P.K., Calegari, V.C., Prada Pde, O., Moraes, J.C., Araujo, E., Marcondes, M.C., Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats (2008) Endocrinology, 149 (8), pp. 3870-3880