dc.creatorAlves S.M.
dc.creatorBrandao Jr. A.P.
dc.creatorKoshlukov P.
dc.date2009
dc.date2015-06-26T13:35:10Z
dc.date2015-11-26T15:34:09Z
dc.date2015-06-26T13:35:10Z
dc.date2015-11-26T15:34:09Z
dc.date.accessioned2018-03-28T22:42:44Z
dc.date.available2018-03-28T22:42:44Z
dc.identifier
dc.identifierCommunications In Algebra. , v. 37, n. 6, p. 2008 - 2020, 2009.
dc.identifier927872
dc.identifier10.1080/00927870802266482
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70449730767&partnerID=40&md5=8342a90c6e8022ee93dcb2607fb3a17a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92177
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92177
dc.identifier2-s2.0-70449730767
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262924
dc.descriptionLet K be a field, char K = 0, and let E = E 0 ⊕ E 1 be the Grassmann algebra of infinite dimension over K, equipped with its natural ℤ 2-grading. If G is a finite abelian group and R = ⊕ g∈GR (g) is a G-graded K-algebra, then the algebra R ⊗ E can be G × ℤ 22-graded by setting (R ⊗ E) (g,i) = R (g) ⊗ E i. In this article we describe the graded central polynomials for the T-prime algebras M n(E) ≅ M n(K) ⊗ E. As a corollary we obtain the graded central polynomials for the algebras M a,b(E) ⊗ E. As an application, we determine the ℤ 2-graded identities and central polynomials for E ⊗ E. © Taylor & Francis Group, LLC.
dc.description37
dc.description6
dc.description2008
dc.description2020
dc.descriptionKemer, A., (1991) Ideals of Identities of Associative Algebras, , Translations Math. Monographs 87. Providence, RI: Amer. Math. Soc
dc.descriptionVasilovsky, S.Y., ℤ n-graded polynomial identities of the full matrix algebra of order n (1999) Proc. Amer. Math. Soc., 127 (12), pp. 3517-3524
dc.descriptionAzevedo, S.S., Graded identities for the matrix algebra of order n over an infinite field (2002) Commun. Algebra, 30 (12), pp. 5849-5860
dc.descriptionKrakowski, D., Regev, A., The polynomial identities of the Grassmann algebra (1973) Trans. A.M.S., 181, pp. 429-438
dc.descriptionPopov, A., Identities of the tensor square of a Grassmann algebra (1982) Algebra Logic, 21, pp. 296-316
dc.descriptionDi Vincenzo, O.M., Nardozza, V., Graded polynomial identities for tensor products by the Grassmann algebra (2003) Commun. Alg., 31 (3), pp. 1453-1474
dc.descriptionAzevedo, S.S., Fidellis, M., Koshlukov, P., Graded identities and PI equivalence of algebras in positive characteristic (2005) Commun. Algebra, 33 (4), pp. 1011-1022
dc.descriptionFormanek, E., Central polynomials for matrix rings (1972) J. Algebra, 23, pp. 129-132
dc.descriptionRazmyslov Yu., P., On a problem of Kaplansky (1973) Math. USSR, Izv., 7, pp. 479-496
dc.descriptionOkhitin, S., Central polynomials of the algebra of second order matrices (1988) Moscow Univ. Math. Bull., 43 (4), pp. 49-51
dc.descriptionColombo, J., Koshlukov, P., Central polynomials in the matrix algebra of order two (2004) Linear Algebra Appl., 377, pp. 53-67
dc.descriptionBrandão, A., Koshlukov, P., Krasilnikov, A., (2007) Graded Central Polynomials for the Matrix Algebra of Order Two, , To appear Monatshefte für Mathematik, 2009
dc.descriptionBrandão, A., Koshlukov, P., Central polynomials for2-graded algebras and for algebras with involution (2007) J. Pure Appl. Algebra, 208, pp. 877-886
dc.descriptionDi Vincenzo, O.M., Cocharacters of G-graded algebras (1996) Commun. Algebra, 24 (10), pp. 3293-3310
dc.descriptionKemer, A., Varieties and ℤ2-graded algebras (1985) Math. USSR Izv., 25, pp. 359-374
dc.descriptionBrandao, A., Graded Central Polynomials for the Algebra M n K (2007) Rendiconti del Circolo Mathematico di Palermo, 57 (2), pp. 265-278
dc.descriptionAlves, S.M., Koshlukov, P., Polynomial identities of algebras in positive characteristic (2006) J. Algebra, 305 (2), pp. 1149-1165
dc.descriptionDi Vincenzo, O.M., On the graded identities of M 1,1 (1992) E. Israel J. Math., 80 (3), pp. 323-335
dc.descriptionKoshlukov, P., Azevedo, S.S., Graded identities for T-prime algebras over fields of positive characteristic (2002) Israel J. Math., 128, pp. 157-176
dc.descriptionRazmyslov Yu., P., Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (1973) Algebra Logic, 10, pp. 47-63
dc.descriptionDrensky, V., A minimal basis for the identities of a second-order matrix algebra over a field of characteristic 0 (1980) Algebra Logic, 20, pp. 188-194
dc.languageen
dc.publisher
dc.relationCommunications in Algebra
dc.rightsfechado
dc.sourceScopus
dc.titleGraded Central Polynomials For T -prime Algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución