Artículos de revistas
Searching For Modular Structure In Complex Phenotypes: Inferences From Network Theory
Registro en:
Evolutionary Biology. , v. 36, n. 4, p. 416 - 422, 2009.
713260
10.1007/s11692-009-9074-7
2-s2.0-72249090842
Autor
Ivan Perez S.
de Aguiar M.A.M.
Guimaraes Jr. P.R.
dos Reis S.F.
Institución
Resumen
The notion of modularity has become a unifying principle to understand structural and functional aspects of biological organization at different levels of complexity. Recently, deciphering the modular organization of molecular systems has been greatly aided by network theory. Nevertheless, network theory is completely absent from the investigation of modularity of complex macroscopic phenotypes, a fundamental level of organization at which organisms experience and interact with the environment. Here, we used geometric descriptors of phenotypic variation to derive a network representation of a complex morphological structure, the mammalian mandible, in terms of nodes and links. Then, by integrating the network representation and description with random matrix theory, we uncovered a modular organization for the mammalian mandible, which deviates significantly from an equivalent random network. The modules revealed by the network analysis correspond to the four morphogenetic units recognized for the mammalian mandible on a developmental basis. Furthermore, these modules are known to be affected only by particular genes and are also functionally differentiated. This study shows that the powerful formalism of network theory can be applied to the discovery of modules in complex phenotypes and opens the possibility of an integrated approach to the study of modularity at all levels of organizational complexity. © Springer Science+Business Media, LLC 2009. 36 4 416 422 Adams, D.C., Rohlf, F.J., Slice, D.E., Geometric morphometrics: Ten years of progress following the 'revolution' (2004) The Italian Journal of Zoology, 71, pp. 5-16 Albert, R., Barabási, A.L., Statistical mechanics of complex networks (2002) Review of Modern Physics, 74, pp. 47-97 Atchley, W.R., Hall, B.K., A model for development and evolution of complex morphological structures (1991) Biological Review, 66, pp. 101-157 Batagelj, V., Mrvar, A., (2008) Pajek 1. 23 Software, , http://vlado.fmf.uni-lj.si/pub/networks/pajek/ Bookstein, F.L., (1991) Morphometric Tools for Landmark Data: Geometry and Biology, , London: Cambridge University Press Cheverud, J.M., Modular pleiotropic effects of quantitative trait loci on morphological traits (2004) Modularity in Development and Evolution, pp. 132-153. , G. Schlosser and G. P. Wagner (Eds.), Chicago: Chicago University Press Cheverud, J.M., Routman, E.J., Irschick, D.K., Pleiotropic effects of individual gene loci on mandibular morphology (1997) Evolution, 51, pp. 2004-2014 Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A., Comparing community structure identification (2005) Journal of Statistical Mechanics, , P09008 Davidson, E.H., Levine, M., Properties of developmental gene regulatory networks (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 20063-20066 de Aguiar, M.A.M., Bar-Yam, Y., Spectral analysis and the dynamic response of complex networks (2005) Physical Review, E71, p. 6106 Ehrich, T.H., Vaughn, T.T., Koreishi, S.F., Linsey, R.B., Pletscher, L.S., Cheverud, J.M., Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance (2003) Journal of Experimental Zoology Molecular and Developmental Evolution, 296 B, pp. 58-79 Galewski, T., Mauffrey, J.F., Leite, Y.L.R., Patton, J.L., Douzery, E.J.P., Ecomorphological diversification among South American spiny rats (Rodentia: Echimyidae): A phylogenetic and chronological approach (2005) Molecular Phylogenetics and Evolution, 34, pp. 601-615 Guimerà, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900 Guimerà, R., Sales-Pardo, M., Amaral, L.A.N., Modularity from fluctuations in random graphs and complex networks (2004) Physical Review E, 70, p. 025101 Hall, B.K., Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units (2003) Biology and Philosophy, 18, pp. 219-247 Hallgrimsson, B., Lieberman, D.E., Young, N.M., Parsons, T., Wat, S., Evolution of covariance in the mammalian skull (2007) Novartis Foundation Symposium, 284, pp. 164-190 Hintze, A., Adami, C., Evolution of complex modular biological networks (2008) PLoS Computational Biology, 4, pp. e23 Klingenberg, C.P., Mebus, K., Auffray, J.-C., Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? (2003) Evolution and Development, 5, pp. 522-531 Klingenberg, C.P., Zaklan, S.D., Morphological integration between developmental compartments in the Drosophila wing (2000) Evolution, 54, pp. 1273-1285 Kreimer, A., Boresntein, E., Gophna, U., Ruppin, E., The evolution of modularity in bacterial metabolic networks (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 6976-6981 Levin, S.A., The problem of pattern and scale in ecology (1992) Ecology, 73, pp. 1943-1967 Levin, S.A., Complex adaptive systems: Exploring the known, the unknown and the unknowable (2003) Bulletin of the American Mathematical Society, 40, pp. 3-19 Ma'ayan, A., Insights into the organization of biochemical regulatory networks using graph theory analyses (2009) Journal of Biological Chemistry, 284, pp. 5451-5455 Marroig, G., Cheverud, J.M., A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys (2001) Evolution, 55, pp. 2576-2600 Mehta, M.L., (2004) Random Matrices, , New York: Academic Press Mitteroecker, P., Bookstein, F., The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans (2009) Evolution, 63, pp. 727-737 Newman, M.E.J., Modularity and community structure in networks (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 8577-8582 Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Stevens, M.H.H., Vegan: Community ecology package (2008) R Package Version 1. 11-4, , http://cran.r-project.org Palla, G., Vattay, G., Spectral transitions in networks (2006) New Journal of Physics, 8, p. 307 Peres-neto, P.R., Jackson, D.A., How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test (2001) Oecologia, 129, pp. 169-178 Perez, S.I., Diniz-Filho, J.A.F., Rohlf, F.J., dos Reis, S.F., Morphological diversification among South American spiny rats (Rodentia: Echimyidae): Ecological and phylogenetic factors (2009) Journal of the Linnean Society, 96, pp. 646-660 Porto, A., de Oliveira, F.B., Shirai, L.T., de Conto, V., Marroig, G., The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes (2008) Evolutionary Biology, 35, pp. 1-18 Raff, R.A., (1996) The Shape of Life: Genes, Development, and the Evolution of Animal Form, , Chicago: University of Chicago Press Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L., Hierarchical organization of modularity in metabolic networks (2002) Science, 297, pp. 1551-1555 Rohlf, F.J., (2007) Tps Series Softwares, , http//life.bio.sunysb.edu/morph/ Sales-pardo, M., Guimerà, R., Moreira, A.A., Amaral, L.A.N., Extracting the hierarchical organization of complex systems (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 15224-15229 (2004) Modularity in Development and Evolution, , G. Schlosser and G. P. Wagner (Eds.), Chicago: Chicago University Press Sheets, H.D., (2003) IMP-Integrated Morphometrics Package, , Department of Physics, Canisius College, Buffalo, New York Steinhauser, D., Krall, L., Müssig, C., Büssis, D., Usadel, B., Correlation networks (2008) Analysis of Biological Networks, pp. 305-333. , B. H. Junker and F. Schreiber (Eds.), New Jersey: Wiley Wagner, G.P., On the eigenvalues of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation (1984) Journal of Mathematical Biology, 21, pp. 77-95 Wagner, G.P., Homologues, natural kinds and the evolution of modularity (1996) American Zoologist, 36, pp. 36-43 Wagner, G.P., Pavlicev, M., Cheverud, J.M., The road to modularity (2007) Nature Reviews. Genetics, 8, pp. 921-931 Wang, Z., Zhang, J., In search of the biological significance of modular structures in protein networks (2007) PLoS Computational Biology, 3 (6), pp. e107 Winther, R.G., Varieties of modules: Kinds, levels, origins, and behaviours (2001) Journal of Experimental Zoology Molecular and Developmental Evolution, 291, pp. 116-129