dc.creatorOliveira N.R.C.
dc.creatorMarques S.O.
dc.creatorLuciano T.F.
dc.creatorPauli J.R.
dc.creatorMoura L.P.
dc.creatorCaperuto E.
dc.creatorPieri B.L.S.
dc.creatorEngelmann J.
dc.creatorScaini G.
dc.creatorStreck E.L.
dc.creatorLira F.S.
dc.creatorPinho R.A.
dc.creatorRopelle E.R.
dc.creatorSilva A.S.R.
dc.creatorDe Souza C.T.
dc.date2014
dc.date2015-06-25T17:50:32Z
dc.date2015-11-26T15:33:57Z
dc.date2015-06-25T17:50:32Z
dc.date2015-11-26T15:33:57Z
dc.date.accessioned2018-03-28T22:42:32Z
dc.date.available2018-03-28T22:42:32Z
dc.identifier
dc.identifierMediators Of Inflammation. Hindawi Publishing Corporation, v. 2014, n. , p. - , 2014.
dc.identifier9629351
dc.identifier10.1155/2014/987017
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903641515&partnerID=40&md5=7054b56c392ca11d57810c3b7c19ec6e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85854
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85854
dc.identifier2-s2.0-84903641515
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262874
dc.descriptionThe present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training. © 2014 Nara R. C. Oliveira et al.
dc.description2014
dc.description
dc.description
dc.description
dc.descriptionLanza, I.R., Nair, K.S., Regulation of skeletal muscle mitochondrial function: Genes to proteins (2010) Acta Physiologica, 199 (4), pp. 529-547. , 2-s2.0-77954335451 10.1111/j.1748-1716.2010.02124.x
dc.descriptionHutter, E., Skovbro, M., Lener, B., Prats, C., Rabol, R., Dela, F., Jansen-Durr, P., Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle (2007) Aging Cell, 6 (2), pp. 245-256. , DOI 10.1111/j.1474-9726.2007.00282.x
dc.descriptionChabi, B., Ljubicic, V., Menzies, K.J., Huang, J.H., Saleem, A., Hood, D.A., Mitochondrial function and apoptotic susceptibility in aging skeletal muscle (2008) Aging Cell, 7 (1), pp. 2-12. , 2-s2.0-38349087249 10.1111/j.1474-9726.2007.00347.x
dc.descriptionPicard, M., Ritchie, D., Wright, K.J., Romestaing, C., Thomas, M.M., Rowan, S.L., Taivassalo, T., Hepple, R.T., Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers (2010) Aging Cell, 9 (6), pp. 1032-1046. , 2-s2.0-78249257768 10.1111/j.1474-9726.2010.00628.x
dc.descriptionPicard, M., Ritchie, D., Thomas, M.M., Wright, K.J., Hepple, R.T., Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles (2011) Aging Cell, 10 (6), pp. 1047-1055. , 2-s2.0-81155138284 10.1111/j.1474-9726.2011.00745.x
dc.descriptionKoltai, E., Hart, N., Taylor, A.W., Goto, S., Ngo, J.K., Davies, K.J., Radak, Z., Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training (2012) American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 303 (2), pp. 127-134
dc.descriptionPorcu, M., Chiarugi, A., The emerging therapeutic potential of sirtuin-interacting drugs: From cell death to lifespan extension (2005) Trends in Pharmacological Sciences, 26 (2), pp. 94-103. , DOI 10.1016/j.tips.2004.12.009, PII S0165614704003232
dc.descriptionShahbazian, M.D., Grunstein, M., Functions of Site-Specific histone acetylation and deacetylation (2007) Annual Review of Biochemistry, 76, pp. 75-100. , 2-s2.0-34547890019 10.1146/annurev.biochem.76.052705.162114
dc.descriptionLavu, S., Boss, O., Elliott, P.J., Lambert, P.D., Sirtuins - Novel therapeutic targets to treat age-associated diseases (2008) Nature Reviews Drug Discovery, 7 (10), pp. 841-853. , 2-s2.0-53249121556 10.1038/nrd2665
dc.descriptionMichishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., Horikawa, I., Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins (2005) Molecular Biology of the Cell, 16 (10), pp. 4623-4635. , DOI 10.1091/mbc.E05-01-0033
dc.descriptionFulco, M., Schiltz, R.L., Iezzi, S., King, M.T., Zhao, P., Kashiwaya, Y., Hoffman, E., Sartorelli, V., Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state (2003) Molecular Cell, 12 (1), pp. 51-62. , DOI 10.1016/S1097-2765(03)00226-0
dc.descriptionWu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Spiegelman, B.M., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 (1999) Cell, 98 (1), pp. 115-124. , DOI 10.1016/S0092-8674(00)80611-X
dc.descriptionLehman, J.J., Barger, P.M., Kovacs, A., Saffitz, J.E., Medeiros, D.M., Kelly, D.P., Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis (2000) The Journal of Clinical Investigation, 106 (7), pp. 847-856. , 2-s2.0-0033803048
dc.descriptionKahn, B.B., Alquier, T., Carling, D., Hardie, D.G., AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism (2005) Cell Metabolism, 1 (1), pp. 15-25. , DOI 10.1016/j.cmet.2004.12.003, PII S1550413104000099
dc.descriptionMerrill, G.F., Kurth, E.J., Hardie, D.G., Winder, W.W., AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle (1997) The American Journal of Physiology, 273 (6), pp. 1107-1112
dc.descriptionWinder, W.W., Wilson, H.A., Hardie, D.G., Rasmussen, B.B., Hutber, C.A., Call, G.B., Clayton, R.D., Zhou, B., Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A (1997) Journal of Applied Physiology, 82 (1), pp. 219-225
dc.descriptionBergeron, R., Ren, J.M., Cadman, K.S., Moore, I.K., Perret, P., Pypaert, M., Young, L.H., Shulman, G.I., Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis (2001) American Journal of Physiology: Endocrinology and Metabolism, 281 (6), pp. E1340-E1346. , 2-s2.0-0035665594
dc.descriptionZong, H., Ren, J.M., Young, L.H., Pypaert, M., Mu, J., Birnbaum, M.J., Shulman, G.I., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (25), pp. 15983-15987. , DOI 10.1073/pnas.252625599
dc.descriptionReznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.-X., Shulman, G.I., Aging-Associated Reductions in AMP-Activated Protein Kinase Activity and Mitochondrial Biogenesis (2007) Cell Metabolism, 5 (2), pp. 151-156. , DOI 10.1016/j.cmet.2007.01.008, PII S1550413107000095
dc.descriptionJornayvaz, F.R., Shulman, G.I., Regulation of mitochondrial biogenesis (2010) Essays in Biochemistry, 47, pp. 69-84. , 2-s2.0-79951977334
dc.descriptionCantó, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., Auwerx, J., Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle (2010) Cell Metabolism, 11 (3), pp. 213-219. , 2-s2.0-77249156847 10.1016/j.cmet.2010.02.006
dc.descriptionBayod, S., Del Valle, J., Lalanza, J.F., Sanchez-Roige, S., De Luxán-Delgado, B., Coto Montes, A., Canudas, A.M., Pallàs, M., Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues (2012) Experimental Gerontology, 47 (12), pp. 925-935
dc.descriptionDella Gata, P.A., Garnham, A.P., Peake, J.M., Cameron-Smith, D., Effect of Exercise Training on Skeletal Muscle Cytokine Expression in the Elderly, , Brain, Behavior, and Immunity. In press
dc.descriptionTobina, T., Yoshioka, K., Hirata, A., Mori, S., Kiyonaga, A., Tanaka, H., Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle (2011) The Journal of Sports Medicine and Physical Fitness, 51 (4), pp. 683-688. , 2-s2.0-84856836068
dc.descriptionArmstrong, R.B., Phelps, R.O., Muscle fiber type composition of the rat hindlimb (1984) American Journal of Anatomy, 171 (3), pp. 259-272. , DOI 10.1002/aja.1001710303
dc.descriptionShepherd, D., Garland, P.B., The kinetic properties of citrate synthase from rat liver mitochondria (1969) The Biochemical Journal, 114 (3), pp. 597-610. , 2-s2.0-0014578265
dc.descriptionFischer, J.C., Ruitenbeek, W., Berden, J.A., Differential investigation of the capacity of succinate oxidation in human skeletal muscle (1985) Clinica Chimica Acta, 153 (1), pp. 23-26. , DOI 10.1016/0009-8981(85)90135-4
dc.descriptionCassina, A., Radi, R., Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport (1996) Archives of Biochemistry and Biophysics, 328 (2), pp. 309-316. , DOI 10.1006/abbi.1996.0178
dc.descriptionRustin, P., Chretien, D., Bourgeron, T., Gerard, B., Rotig, A., Saudubray, J.M., Munnich, A., Biochemical and molecular investigations in respiratory chain deficiencies (1994) Clinica Chimica Acta, 228 (1), pp. 35-51. , DOI 10.1016/0009-8981(94)90055-8
dc.descriptionTilstra, J.S., Robinson, A.R., Wang, J., Gregg, S.Q., Clauson, C.L., Reay, D.P., Nasto, L.A., Robbins, P.D., NF- B inhibition delays DNA damage-induced senescence and aging in mice (2012) The Journal of Clinical Investigation, 122 (7), pp. 2601-2612
dc.descriptionGianni, P., Jan, K.J., Douglas, M.J., Stuart, P.M., Tarnopolsky, M.A., Oxidative stress and the mitochondrial theory of aging in human skeletal muscle (2004) Experimental Gerontology, 39 (9), pp. 1391-1400. , DOI 10.1016/j.exger.2004.06.002, PII S0531556504001871
dc.descriptionShort, K.R., Bigelow, M.L., Kahl, J., Singh, R., Coenen-Schimke, J., Raghavakaimal, S., Nair, K.S., Decline in skeletal muscle mitochondrial function with aging in humans (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (15), pp. 5618-5623. , DOI 10.1073/pnas.0501559102
dc.descriptionBua, E., Johnson, J., Herbst, A., Delong, B., McKenzie, D., Salamat, S., Aiken, J.M., Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers (2006) American Journal of Human Genetics, 79 (3), pp. 469-480. , DOI 10.1086/507132
dc.descriptionPardo, P.S., Boriek, A.M., The physiological roles of Sirt1 in skeletal muscle (2011) Aging, 3 (4), pp. 430-437. , 2-s2.0-80052078788
dc.descriptionCantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity (2009) Nature, 458 (7241), pp. 1056-1060. , 2-s2.0-67349276169 10.1038/nature07813
dc.descriptionFeige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Auwerx, J., Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation (2008) Cell Metabolism, 8 (5), pp. 347-358. , 2-s2.0-54849425547 10.1016/j.cmet.2008.08.017
dc.descriptionJensen, T.E., Richter, E.A., Regulation of glucose and glycogen metabolism during and after exercise (2012) Journal of Physiology, 590 (5), pp. 1069-1076. , 2-s2.0-84857664832 10.1113/jphysiol.2011.224972
dc.descriptionMcKenna, M.J., Bangsbo, J., Renaud, J.-M., Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: Implications for fatigue (2008) Journal of Applied Physiology, 104 (1), pp. 288-295. , 2-s2.0-38349018687 10.1152/japplphysiol.01037.2007
dc.descriptionSuwa, M., Nakano, H., Radak, Z., Kumagai, S., Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle (2008) Metabolism: Clinical and Experimental, 57 (7), pp. 986-998. , DOI 10.1016/j.metabol.2008.02.017, PII S0026049508000887
dc.descriptionRasmussen, U.F., Krustrup, P., Kjaer, M., Rasmussen, H.N., Experimental evidence against the mitochondrial theory of aging A study of isolated human skeletal muscle mitochondria (2003) Experimental Gerontology, 38 (8), pp. 877-886. , DOI 10.1016/S0531-5565(03)00092-5
dc.descriptionJorgensen, S.B., Wojtaszewski, J.F.P., Viollet, B., Andreelli, F., Birk, J.B., Hellsten, Y., Schjerling, P., Pilegaard, H., Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle (2005) FASEB Journal, 19 (9), pp. 1146-1148. , DOI 10.1096/fj.04-3144fje
dc.descriptionMcCarty, M.F., Chronic activation of AMP-activated kinase as a strategy for slowing aging (2004) Medical Hypotheses, 63 (2), pp. 334-339. , DOI 10.1016/j.mehy.2004.01.043, PII S0306987704002968
dc.descriptionBetik, A.C., Thomas, M.M., Wright, K.J., Riel, C.D., Hepple, R.T., Exercise training from late middle age until senescence does not attenuate the declines in skeletal muscle aerobic function (2009) American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 297 (3), pp. 744-755
dc.descriptionLjubicic, V., Hood, D.A., Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle (2009) Aging Cell, 8 (4), pp. 394-404. , 2-s2.0-67651174518 10.1111/j.1474-9726.2009.00483.x
dc.descriptionSasaki, T., Maier, B., Bartke, A., Scrable, H., Progressive loss of SIRT1 with cell cycle withdrawal (2006) Aging Cell, 5 (5), pp. 413-422. , DOI 10.1111/j.1474-9726.2006.00235.x
dc.languageen
dc.publisherHindawi Publishing Corporation
dc.relationMediators of Inflammation
dc.rightsaberto
dc.sourceScopus
dc.titleTreadmill Training Increases Sirt-1 And Pgc-1 α Protein Levels And Ampk Phosphorylation In Quadriceps Of Middle-aged Rats In An Intensity-dependent Manner
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución