Artículos de revistas
Translational Research Into Gut Microbiota: New Horizons In Obesity Treatment [pesquisa Translacional Em Microbiota Intestinal: Novos Horizontes No Tratamento Da Obesidade]
Registro en:
Arquivos Brasileiros De Endocrinologia E Metabologia. , v. 53, n. 2, p. 139 - 144, 2009.
42730
2-s2.0-67649413366
Autor
Tsukumo D.M.
Carvalho B.M.
Carvalho-Filho M.A.
Mario J.A.S.
Institución
Resumen
Obesity is a pandemic which has been rapidly developing for three decades. When a population is submitted to the same nutritional stress, some individuals are less susceptible to diet-induced weight gain and hyperglycemia. This observation suggests that other mechanisms are involved which are not directly related to the human genome. The human gut contains an immense number of microorganisms, collectively known as the microbiota. Evidence that gut microbiota composition can differ between obese and lean humans has led to the speculation that gut microbiota can participate in the pathophysiology of obesity. Different mechanisms have been proposed to explain the link between gut flora and obesity. The first mechanism consists in the role of the gut microbiota to increase energy extraction from indigestible dietary polysaccharides. The second, consists in the role of gut flora to modulate plasma lipopolysaccharide levels which triggers chronic low-grade inflammation leading to obesity and diabetes. A third mechanism proposes that gut microbiota may induce regulation of host genes that modulate how energy is expended and stored. However, further studies are needed to clarify a number of issues related to the relationship between the gut microbiota and obesity. 53 2 139 144 Hill, J.O., Wyatt, H.R., Reed, G.W., Peters, J.C., Obesity and the environment: Where do we go from here? (2003) Science, 299 (5608), pp. 853-855 Hill, J.O., Understanding and addressing the epidemic of obesity: An energy balance perspective (2006) Endocr Rev, 27 (7), pp. 750-761 Levin, B.E., Keesey, R.E., Defense of differing body weight set points in diet-induced obese and resistant rats (1998) Am J Physiol, 274 (2 PART. 2), pp. R412-R419 Tappy, L., Metabolic consequences of overfeeding in humans (2004) Curr Opin Clin Nutr Metab Care, 7 (6), pp. 623-628 Xu, J., Gordon, J.I., Inaugural Article: Honor thy symbionts (2003) Proc Natl Acad Sci USA, 100 (18), pp. 10452-10459 Cani, P.D., Delzenne, N.M., Gut microflora as a target for energy and metabolic homeostasis (2007) Curr Opin Clin Nutr Metab Care, 10 (6), pp. 729-734 Bocci, V., The neglected organ: Bacterial flora has a crucial immunostimulatory role (1992) Perspect Biol Med, 35 (2), pp. 251-260 Dibaise, J.K., Zhang, H., Crowell, M.D., Krajmalnik-Brown, R., Decker, G.A., Rittmann, B.E., Gut microbiota and its possible relationship with obesity (2008) Mayo Clin Proc, 83 (4), pp. 460-469 Shanahan, F., The host-microbe interface within the gut (2002) Best Pract Res Clin Gastroenterol, 16 (6), pp. 915-931 Gronlund, M.M., Lehtonen, O.P., Eerola, E., Kero, P., Fecal microflora in healthy infants born by different methods of delivery: Permanent changes in intestinal flora after cesarean delivery (1999) J Pediatr Gastroenterol Nutr, 28 (1), pp. 19-25 Favier, C.F., Vaughan, E.E., de Vos, W.M., Akkermans, A.D., Molecular monitoring of succession of bacterial communities in human neonates (2002) Appl Environ Microbiol, 68 (1), pp. 219-226 Midtvedt, A.C., Midtvedt, T., Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life (1992) J Pediatr Gastroenterol Nutr, 15 (4), pp. 395-403 Zoetendal, E.G., Akkermans, A.D., de Vos, W.M., Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria (1998) Appl Environ Microbiol, 64 (10), pp. 3854-3859 Mountzouris, K.C., McCartney, A.L., Gibson, G.R., Intestinal microflora of human infants and current trends for its nutritional modulation (2002) Br J Nutr, 87 (5), pp. 405-420 Kosloske, A.M., Epidemiology of necrotizing enterocolitis (1994) Acta Paediatr Suppl, 396, pp. 2-7 Orrhage, K., Nord, C.E., Factors controlling the bacterial colonization of the intestine in breastfed infants (1999) Acta Paediatr Suppl, 88 (430), pp. 47-57 Gorbach, S.L., Intestinal microflora (1971) Gastroenterology, 60 (6), pp. 1110-1129 Mackie, R.I., Sghir, A., Gaskins, H.R., Developmental microbial ecology of the neonatal gastrointestinal tract (1999) Am J Clin Nutr, 69 (5), pp. 1035S-1045S Hopkins, M.J., Sharp, R., Macfarlane, G.T., Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles (2001) Gut, 48 (2), pp. 198-205 Gorbach, S.L., Nahas, L., Lerner, P.I., Weinstein, L., Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man (1967) Gastroenterology, 53 (6), pp. 845-855 Mitsuoka, T., Recent trends in research on intestinal flora (1982) Bifidobacteria Microflora, 1, pp. 3-24 Zoetendal, E.G., Akkermans, A.D.L., Akkermans-van, W.M., de Visser, J.A.G.M., de Vos, W.M., The host genotype affects the bacterial community in the human gastrointestinal tract (2001) Microb Ecol Health Dis, 13 (3), pp. 129-134 Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., The gut microbiota as an environmental factor that regulates fat storage (2004) Proc Natl Acad Sci USA, 101 (44), p. 15718 Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I., An obesity-associated gut microbiome with increased capacity for energy harvest (2006) Nature, 444 (7122), pp. 1027-1031 Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon, J.I., Obesity alters gut microbial ecology (2005) Proc Natl Acad Sci USA, 102 (31), pp. 11070-11075 Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I., Microbial ecology: Human gut microbes associated with obesity (2006) Nature, 444 (7122), pp. 1022-1023 Cani, P.D., Joly, E., Horsmans, Y., Delzenne, N.M., Oligofructose promotes satiety in healthy human: A pilot study (2006) Eur J Clin Nutr, 60 (5), pp. 567-572 Cani, P.D., Neyrinck, A.M., Maton, N., Delzenne, N.M., Oligofructose promotes satiety in rats fed a high-fat diet: Involvement of glucagon-like Peptide-1 (2005) Obes Res, 13 (6), pp. 1000-1007 Wellen, K.E., Hotamisligil, G.S., Inflammation, stress, and diabetes (2005) J Clin Invest, 115 (5), pp. 1111-1119 Caricilli, A.M., Nascimento, P.H., Pauli, J.R., Tsukumo, D.M., Velloso, L.A., Carvalheira, J.B., Inhibition of toll-like receptor 2 expression improves insulin sensitivity and signaling in muscle and white adipose tissue of mice fed a high-fat diet (2008) J Endocrinol, 199 (3), pp. 399-406 Carvalho-Filho, M.A., Ueno, M., Hirabara, S.M., Seabra, A.B., Carvalheira, J.B., de Oliveira, M.G., S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance (2005) Diabetes, 54 (4), pp. 959-967 Prada, P.O., Zecchin, H.G., Gasparetti, A.L., Torsoni, M.A., Ueno, M., Hirata, A.E., Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion (2005) Endocrinology, 146 (3), pp. 1576-1587 Tsukumo, D.M., Carvalho-Filho, M.A., Carvalheira, J.B., Prada, P.O., Hirabara, S.M., Schenka, A.A., Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance (2007) Diabetes, 56 (8), pp. 1986-1998 Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Metabolic endotoxemia initiates obesity and insulin resistance (2007) Diabetes, 56 (7), pp. 1761-1772 Pappo, I., Becovier, H., Berry, E.M., Freund, H.R., Polymyxin B reduces cecal flora, TNF production and hepatic steatosis during total parenteral nutrition in the rat (1991) J Surg Res, 51 (2), pp. 106-112 Creely, S.J., McTernan, P.G., Kusminski, C.M., Fisher, M., da Silva, N.F., Khanolkar, M., Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes (2007) Am J Physiol Endocrinol Metab, 292 (3), pp. E740-E747 Membrez, M., Blancher, F., Jaquet, M., Bibiloni, R., Cani, P.D., Burcelin, R.G., Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice (2008) Faseb J, 22 (7), pp. 2416-2426 Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice (2008) Diabetes, 57 (6), pp. 1470-1481 Backhed, F., Manchester, J.K., Semenkovich, C.F., Gordon, J.I., Mechanisms underlying the resistance to diet-induced obesity in germfree mice (2007) Proc Natl Acad Sci USA, 104 (3), pp. 979-984