dc.creatorBallini R.
dc.creatorGomide F.
dc.date2002
dc.date2015-06-30T16:43:00Z
dc.date2015-11-26T15:33:52Z
dc.date2015-06-30T16:43:00Z
dc.date2015-11-26T15:33:52Z
dc.date.accessioned2018-03-28T22:42:29Z
dc.date.available2018-03-28T22:42:29Z
dc.identifier
dc.identifierIeee International Conference On Fuzzy Systems. , v. 1, n. , p. 785 - 790, 2002.
dc.identifier10987584
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0036457989&partnerID=40&md5=46cdf7a3fc7067c94476f134875a261b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101721
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101721
dc.identifier2-s2.0-0036457989
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262858
dc.descriptionA novel recurrent, hybrid neurofuzzy network is proposed in this paper. This model is composed by two distinct parts: a fuzzy inference system and a neural network. The fuzzy system is constructed from fuzzy set models whose units of the fuzzy system are modeled through triangular norms and co-norms, and weights defined within the unit interval. The neural network contain classical nonlinear neurons. The hybrid system has a multilayer, recurrent structure. The learning procedure developed is based on two main paradigms; associative reinforcement learning and gradient search. These learning algorithms are associated to the fuzzy system and neural network, respectively. That is, output layer weights are adjusted via an error gradient method whereas a reward and punishment scheme updates the hidden layer weights. The recurrent neurofuzzy network is used to develop models of a nonlinear processes. Numerical results show that the neurofuzzy network proposed here provides accurate models after short period of learning time.
dc.description1
dc.description
dc.description785
dc.description790
dc.descriptionSantos, E.P., Von Zuben, F.J., Efficient second-order learning algorithms for discrete-time recurrent neural networks (1999) Recurrent Neural Networks: Design and Applications, pp. 47-75. , CRC Press
dc.descriptionL. R. Medsker and L. C. Jain, Eds
dc.descriptionKu, C.C., Lee, K.L., Diagonal recurrent neural networks for dynamic systems control (1995) IEEE Trans. on Neural Networks, 6, pp. 144-156. , January
dc.descriptionWilliams, R.J., Zipser, D., A learning algorithm for continually running fully recurrent neural networks (1989) Neural Computation, 1, pp. 270-280
dc.descriptionLee, C.H., Teng, C.C., Identification and control of dynamic systems using recurrent fuzzy neural networks (2000) IEEE Trans. on Fuzzy Systems, 8 (4), pp. 3493-3666. , August
dc.descriptionBuckley, A., Hayashi, Y., Fuzzy neural networks: A survey (1994) Fuzzy Sets and Systems, 66, pp. 41-49
dc.descriptionNürnberger, A., Radetzky, A., Kruse, R., Using recurrent neuro-fuzzy techniques for the identification and simulation of dynamic systems (2001) Neurocomputing, 36, pp. 123-147
dc.descriptionNürnberger, A., A hierarchical recurrent neuro-fuzzy system Proc. of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, IEEE, 2001, pp. 1407-1412
dc.descriptionBallini, R., Soares, S., Gomide, F., A recorrent neurofuzzy network structure and learning procedure (2001) 10th IEEE International Conference on Fuzzy Systems - FUZZ-IEEE'2001, 3
dc.descriptionCaminhas, W., Tavares, H., Gomide, F., Pedrycz, W., Fuzzy set based neural networks: Structure, learning and application (1999) Journal of Advanced Computational Intelligence, 3 (3), pp. 151-157
dc.descriptionPedrycz, W., Rocha, A., Fuzzy-set based models of neuron and knowledge-based networks (1998) IEEE Transactions on Fuzzy Systems, 4 (1), pp. 254-266
dc.descriptionPedrycz, W., Gomide, F., (1998) An Introduction to Fuzzy Sets: Analysis and Design, , MIT Press, Cambridge, MA
dc.descriptionBarto, A.G., Jordan, M.I., Gradient following without back-propagation in layered networks Proceedings of the IEEE First International Conference on Neural Networks, San Diego, 1987, 2, pp. 629-636
dc.descriptionNozaki, K., Ishibuchi, H., Tanaka, H., Trainable fuzzy classification systems based on fuzzy if-then rules Proc. of the Third IEEE International Conference on Fuzzy Systems, 1994, pp. 408-502
dc.descriptionOliveira, M., Figueiredo, M., Gomide, F., A neurofuzzy approach for autonomous control Proc. of the Third IEEE International Conference on Fuzzy Systems, Neural Nets and Soft Computing, 1994, pp. 597-598
dc.descriptionRumelhart, D., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors (1986) Nature (London), 323, pp. 533-536
dc.descriptionJacobs, R.A., Increased rates of convergence through learning rate adaptation (1988) Neural Networks, 1, pp. 295-307
dc.descriptionNarendra, K.S., Parthasarathy, K., Identification and control of dynamical systems using neural networks (1990) IEEE Transactions on Neural Networks, 1 (1-4)
dc.descriptionWang, L.X., (1994) Adaptive Fuzzy Systems and Control, , Prentice-Hall
dc.languageen
dc.publisher
dc.relationIEEE International Conference on Fuzzy Systems
dc.rightsfechado
dc.sourceScopus
dc.titleLearning In Recurrent, Hybrid Neurofuzzy Networks
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución