dc.creatorSpina T.V.
dc.creatorMontoya-Zegarra J.A.
dc.creatorFalcao A.X.
dc.creatorMiranda P.A.V.
dc.date2009
dc.date2015-06-26T13:34:52Z
dc.date2015-11-26T15:33:51Z
dc.date2015-06-26T13:34:52Z
dc.date2015-11-26T15:33:51Z
dc.date.accessioned2018-03-28T22:42:26Z
dc.date.available2018-03-28T22:42:26Z
dc.identifier9781424432981
dc.identifierDsp 2009: 16th International Conference On Digital Signal Processing, Proceedings. , v. , n. , p. - , 2009.
dc.identifier
dc.identifier10.1109/ICDSP.2009.5201044
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70449565013&partnerID=40&md5=d99373b06bb802c771c2f0450024c73c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92091
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92091
dc.identifier2-s2.0-70449565013
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262850
dc.descriptionThis paper presents an unified framework for fast interactive segmentation of natural images using the image foresting transform (1FT) - A tool for the design of image processing operators based on connectivity functions (path-value functions) in graphs derived from the image. It mainly consists of three tasks: recognition, enhancement, and extraction. Recognition is the only interactive task, where representative image properties for enhancement and the object's location for extraction are indicated by drawing a few markers in the image. Enhancement increases the dissimilarities between object and background for more effective object extraction, which completes segmentation. We show through extensive experiments that, by exploiting the synergism between user and computer for recognition and enhancement, respectively, as a separated step from recognition and extraction, respectively, one can reduce user involvement with better accuracy. We also describe new methods for enhancement based on fuzzy classification by 1FT and for feature selection and/or combination by genetic programming. © 2009 IEEE.
dc.description
dc.description
dc.description
dc.description
dc.descriptionMartin, D., Fowlkes, C., Tal, D., Malik, J., Berkeley segmentation dataset and bench-mark, , http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping
dc.descriptionRother, C., Kolmogorov, V., Blake, A., Brown, M., Image and Video Editing: Grabcut, , http://research.microsoft.com/en-us/um/cambridge/projects/ visionimagevideoediting/segmentation/grabcut.htm
dc.descriptionFalcão, A.X., Udupa, J.K., Miyazawa, F.K., An ultrafast user-steered image segmentation paradigm: Livewire-on-the-fly (2000) IEEE Trans. on Medical Imaging, 19 (1), pp. 55-62
dc.descriptionBoykov, Y.Y., Jolly, M.-P., Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images (2001) International Conference on Computer Vision (ICCV), 1, pp. 105-112
dc.descriptionBlake, A., Rother, C., Brown, M., Perez, P., Torr, P., Interactive image segmentation using an adaptive gmmrfmodel (2004) 8th European Conf. on Computer Vision (ECCV), 1, pp. 428-441. , May
dc.descriptionRother, C., Kolmogorov, Y., Blake, A., "Grabcut": Interactive foreground extraction using iterated graph cuts (2004) ACM Transactions on Graphics, 23 (3), pp. 309-314
dc.descriptionProtiere, A., Sapiro, G., Interactive image segmentation via adaptive weighted distances (2007) IEEE Transactions on Image Processing, 16 (4), p. 10461057. , Apr
dc.descriptionBai, X., Sapiro, G., A geodesic framework for fast interactive image and video segmentation and matting (2007) ICCV (International Conference on Computer Vision), pp. 1-8. , Rio De Janeiro, Brazil, IEEE
dc.descriptionVicente, S., Kolrnogorov, Y., Rother, C., Graph cut based image segmentation with connectivity priors (2008) IEEE Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 1-8. , Anchorage, Alaska, Jun
dc.descriptionFalcão, A.X., Stolfi, J., Lotufo, R.A., The image foresting transform: Theory, algorithms, and applications (2004) IEEE Trans. on Pattern Analysis and Machine Intelligence, 26 (1), pp. 19-29
dc.descriptionFalcão, A.X., Bergo, F.P.G., Interactive volume segmentation with differential image foresting transforms (2004) IEEE Trans. on Medical Imaging, 23 (9), pp. 1100-1108
dc.descriptionFalcão, A.X., Bergo, F.P.G., Miranda, P.A.Y., Image segmentation by tree pruning (2004) XV/f Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPl), pp. 65-71. , Oct, IEEE
dc.descriptionBergo, F.P.G., Falcão, A.X., Miranda, P.A.Y., Rocha, L.M., Automatic image segmentation by tree pruning (2007) Journal ofMathematical Imaging and Vision, 29 (2), pp. 141-162. , Nov
dc.descriptionMiranda, P.A.Y., Falcão, A.X., Rocha, A., Bergo, F.P.G., Object delineation by x-connected components (2008) EURASIP Journal on Advances in Signal Processing, pp. 1-14. , doi: 10.1155/2008 /467928
dc.descriptionBanzhaf, W., Nordin, P., Keller, R.E., Francone, F.D., (1998) Genetic Programming - An Introduction
dc.descriptionOn the Automatic Evolution ofComputer Programs and its Applications, , Morgan Kaufmann, San Francisco, CA, USA, Jan
dc.descriptionPortilla, J., Simoncelli, E.P., A parametric texture model based on joint statistics of complex wavelet coefficients (2000) IntI. Journal ofComputer Vision, 40 (1), pp. 49-70
dc.descriptionMeyer, F., Levelings, image simplifi cation filters for segmentation (2004) Journal of Mathemati cal Imaging and Vision, 20 (1), pp. 59-72
dc.descriptionCormen, T., Leiserson, C., Rivest, R., (1990) Introduction to Algorithms, , MIT
dc.descriptionPapa, J.P., Falcão, A.X., Suzuki, C.T.N., Mascarenhas, N.D.A., A discrete approach for supervised pattern recognition (2008) Proc. of the 12th Inti. Workshop on Combinatorial Image Analysis, LNCS 4958, pp. 136-147. , Buffalo, NY, USA, Apr 7th-9th Springer
dc.descriptionTorres, R.S., Falcão, A.X., Gon Calves, M.A., Papa, J.P., Zhang, B., Fan, W., Fox, E.A., A genetic programming framework for content-based image retrieval (2009) Pattern Recognition, 42, pp. 283-292. , February
dc.descriptionVan Rijsbergen, C.J., (1979) Information Retrieval, , Wiley Interscience,London, second edition
dc.languageen
dc.publisher
dc.relationDSP 2009: 16th International Conference on Digital Signal Processing, Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleFast Interactive Segmentation Of Natural Images Using The Image Foresting Transform
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución