Artículos de revistas
Biocompatibility Differences Between Dispersed And Vertically-aligned Carbon Nanotubes: An In Vitro Assays Review
Registro en:
Carbon Nanotubes: New Research. , v. , n. , p. 281 - 316, 2009.
Autor
Lobo A.O.
Antunes E.F.
Palma M.B.S.
Pacheco-Soares C.
Corat M.A.F.
Trava-Airoldi V.J.
Corat E.J.
Institución
Resumen
An overview about carbon nanotube (CNT) production and quality parameters will be presented, as well a review of current literature about "in vitro"assays commonly used to evaluate the biocompatibility of CNT. The limits of colorimetric assays for CNTs evaluation will be discussed, using comparisons between dispersed CNT and CNT arrays. The influence of nanotopography and wettability of CNT scaffolds for cell adhesion will be shown. Studies carried out in our laboratories with vertically-aligned carbon nanotubes (VACNT) will also be presented. We have shown the interaction among CNT (VACNT) and four cell lines: mouse fibroblasts (L-929), mouse embryo fibroblast (C57/BL6) with or without green fluorescent protein (GFP) and human osteoblast (SaOS-2). The biocompatibility tests were performed with in vitro tests on raw-VACNT and after superficial modification by O2 plasma, which changes its hydrophobic character. The non-toxicity, cell viability, proliferation and cell adhesion were evaluated by: (i) 2-(4,5-dimethyl-2-thioazoly)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assay; (ii) Lactate dehydrogenase (LDH) assay; (iii) neutral red (NR) assay; (iv) Scanning electron microscopy (SEM); and fluorescence microscopy. The influence of catalyst type, VACNT density and superficial modification were evaluated by morphological, structural and superficial techniques: SEM, Transmission electron microscopy (TEM), Raman spectroscopy, contact angle (CA) and X-Ray Photoelectron Spectroscopy (XPS). High cell viability, exceptional cell adhesion and preference were achieved. © 2009 by Nova Science Publishers, Inc. All rights reserved. 281 316 Peppas, N.A., Langer, R., New challenges in biomaterials (1994) Science, 263, pp. 1715-1720 Xu, T., Zhang, N., Nichols, H.L., Shi, D.L., Wen, X.J., Modification of nanostructured materials for biomedical applications (2007) Materials Science & Engineering C-biomimetic and Supramolecular Systems, 27 (3), pp. 579-594 Goldberg, M., Langer, R., Jia, X., Nanostructured materials for applications in drug delivery and tissue engineering (2007) Journal of Biomaterials Science, 18 (3), pp. 241-268 Thomas, V., Dean, D.R., Vohra, Y.K., Nanostructured Biomaterials for regenerative medicine (2006) Current Nanoscience, 2 (3), pp. 155-177 Bhattacharyya, S., Guillott, S., Dabboue, H., Tranchant, J.F., Salvetat, J.P., Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds (2008) Biomacromolecules, 9 (2), pp. 505-509 Cui, D., Advances and Prospects on Biomolecules Functionalized Carbon Nanotubes (2007) Journal of Nanoscience and Nanotechnology, 7 (4-5), pp. 1298-1314 Pham, Q.P., Sharma, U., Mikos, A.G., Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review (2006) Tissue Engineering, 12 (5), pp. 1197-1211 Salvetat, J.P., Bonard, J.M., Thomson, N.H., Mechanical properties of carbon nanotubes (1999) Applied Physics A: Materials Science & Processing, 69, pp. 255-260 Endo, M., Strano, M.S., Ajayan, P.M., Potential applications of carbon nanotubes (2008) Carbon nanotubes: topics in applied physics, 111, pp. 13-61 Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., Electronic, thermal and mechanical properties of carbon nanotubes (2004) Philosophical transactions of the royal society of london series a-mathematical physical and engineering sciences, 362 (1823), pp. 2065-2098 Price, R.L., Waid, M.C., Haberstroh, K.M., Webster, T.J., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887 Cýnar, O., Yuda, Y., Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters (2006) Fullerenes, Nanotubes, and Carbon Nanostructures, 14, pp. 17-37 Suh, D.J., Park, T.J., Kim, J.H., Kim, K.L., Fast sol-gel synthetic route to high surface area alumina aerogels (1997) Chem. Mater., 9 (9), pp. 1903-1905 Ivanov, V., Nagy, J.B., Lambin, P., Lucas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Landuyt, J., The study of carbon nanotubules produced by catalytic method (1994) Chem.Phys. Lett., 223 (4), pp. 329-335 Xu, C., Zhu, J., One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis (2004) Nanotechnolog, 11, pp. 1671-1681 Schwarz, J.A., Contescu, C., Contescu, A., Methods for preparation of catalytic materials (1995) CHEMICAL REVIEWS, 95 (3), pp. 477-510 Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I., Production of nanotubes by the catalytic decomposition of different carbon-containing compounds (2000) Applied Catalysis A: General, 199 (2), pp. 245-255 Zhang, Q., Yoon, S.F., Ahn, J., Gan, B., Rusli, Y.U., Carbon films with high density nanotubes produced using microwave plasma assisted CVD J (2000) Phys. Chem. Solids, 61, pp. 1179-1183 Choi, Y.C., Bae, D.J., Lee, Y.H., Lee, B.S., Han, I.T., Choi, W.B., Lee, N.S., Kim, J.M., Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition (2000) Synth. Met., 108, pp. 159-163 Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide Chemical Physics Letters, 260 (3-4), pp. 471-475 See, C.H., Harris, A.T., A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition (2007) Ind. Eng. Chem. Res., 46, pp. 997-1012 Stevens, M.M., George, J.H., Exploring and Engineering the Cell Surface Interface (2005) Science, 310 (5751), pp. 1135-1138 Chung, Y.H., Jou, S., Carbon nanotubes from catalytic pyrolysis of polypropylene (2005) Mater. Chem. Phys., 92 (1), pp. 256-259 Nakazawa, S., Yokomori, T., Mizomoto, M., Flame synthesis of carbon nanotubes in a wall stagnation flow (2005) Chem. Phys. Lett., 403 (1-3), pp. 158-162 Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295 Paradise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials & Design, 28 (5), pp. 1477-1489 Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295 Chen, Y., Gerald, J.F., Chadderton, L.T., Chaffron, J., Solid-state formation of carbon and boron nitride nanotubes (2000) Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, 343 (3), pp. 63-67 Awasthi, K., Kamalakaran, R., Singh, A.K., Srivastava, O.N., Ball-milled carbon and hydrogen storage (2002) Int. J.Hyd. Eng., 27, pp. 425-432 Amirov, R.H., Asinovsky, E.I., Isakaev, E.K., Kiselev, V.I., Thermal plasma torch for synthesis of carbon nanotubes (2006) High temperature material processes, 10 (2), pp. 197-205 Belin, T., Epron, F., Characterization methods of carbon nanotubes: a review (2005) Materials Science and Engineering B, 119, pp. 105-118 Zhou, W., Wang, Z.L., (2007), Scanning Microscopy for Nanotechnology Techniques and Applications, HardcoverZhong, L.W., Chun, H., Electron Microscopy of Nanotubes (2003), Kluwer Academic PublishersDillon, A.C., Yudasaka, M., Dresselhaus, M.S., Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials (2004) Journal of Nanoscience and Nanotechnology, 4 (7), pp. 691-703 Sniadecki, N.J., Desai, R.A., Ruiz, S.A., Chen, C.S., Nanotechnology for Cell-Substrate Interactions (2005) Annals of Biomedical Engineering, 34 (1), pp. 59-74 Kataura, H., Kumazawaa, Y., Maniwaa, Y., Umezub, I., Suzuki, S., Ohtsuka, Y.C., Achiba, Y., Optical Properties of Single-Wall Carbon Nanotubes (1999) Synthetic Metals, 103, pp. 2555-2558 Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes (2007) Carbon, 45 (5), pp. 913-921 Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44 (11), pp. 2202-2211 Maultzsch, J., Reich, S., Thomsen, C., Dobardi, E., Milevi, I., Damnjanovi, M., Phonon dispersion of carbon nanotubes (2002) Solid State Communications, 121 (9-10), pp. 471-474 Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., Robertson, J., Phonon linewidths and electron-phonon coupling in graphite and nanotubos (2006) Physical Review B, 73, pp. 155426-155432 Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubos (2005) Surface Science Reports, 58, pp. 1-109 Eklund, P.C., Holden, J.M., Jishi, R.A., Vibrational modes of carbon nanotubes Spectroscopy and theory (2005) Carbon, 33 (7), pp. 959-972 Yusa, H., Watanuki, T., X-ray diffraction of multiwalled carbon nanotube under high pressure: Structural durability on static compression (2005) Carbon, 43 (3), pp. 519-523 Shpak, A.P., Kolesnik, S.P., Mogilny, G.S., Petrov, Y.N., Sokhatsky, V.P., Trophimova, L.N., Shanina, B.D., Gavriljuk, V.G., Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubos (2007) Acta Materialia, 55, pp. 1769-1778 Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353 Huang, W., Wang, Y., Luo, G., Wei, F., 99% purity multi-walled carbon nanotubes by vacuum high-temperature annealing (2003) Carbon, 41, pp. 2585-25909 Li, J., Zhang, Y., A simple purification for single-walled carbon nanotubos (2005) Physica E: Low-dimensional Systems and Nanostructures, 28 (3), pp. 309-312 Itkis, M.E., Perea, D.E., Niyogi, R.J.S., HaddonJ, R.C., Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes (2005) Am. Chem. Soc., 127 (10), pp. 3439-3448 Jung, Y.S., Jeon, D.Y., Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition (2002) Applied Surface Science, 193 (1-4), pp. 129-137 Zhao, C.G., Ji, L.J., Liu, H.J., Hu, G.J., Zhang, S.M., Yang, M.S., Yang, Z.Z., Functionalized carbon nanotubes containing isocyanate groups (2004) Journal of Solid State Chemistry, 177 (12), pp. 4394-4398 Okpalugo, T.I.T., Papakonstantinou, P., Murphy, H., McLaughlin, J., Brown, N.M.D., High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs (2005) Carbon, 43 (1), pp. 153-161 Yanl, Y.H., Cuil, J., Chan-Park, M.B., Wang, X., Wu, Q.Y., Systematic studies of covalentfunctionalization of carbon nanotubes viaargon plasma-assisted UV grafting (2007) Nanotechnology, 18, pp. 115712-115719 Miles, J., www.measurement.gov.au/assets/documents/nmiinternet/NMI_TR_1220061130091 501.pdf, Nanometrology: The Critical Role of Measurement in Supporting Australian Nanotechnology. 2006 [08/09/15]Freiman, S., Hooker, S., Migler, K., Arepalli, S., Measurement Issues in Single Wall Carbon Nanotubes (2008) NIST Special Publication, 960 (19), p. 40 http://www.msel.nist.gov/Nanotube2/Carbon_Nanotubes_Guide.htm, National Intitute of Standards and Technology (NIST). Measurement Issues in Single Wall Carbon Nanotubes. 2005 [08/09/15]Dee, K.C., Puleo, D.A., Bizios, R., (2002), An Introduction To Tissue-Biomaterial Interactions Wiley, New YorkRatner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine (2004), Second edition. Academic Press, San DiegoHelland, Å., Wick, P., Koehler, A., Schmid, K., Som, C., Reviewing the environmental and human health knowledge base of carbon nanotubes (2007) Environ Health Perspect, 115 (8), pp. 1125-1131 Mattson, M.P., Haddon, R.C., Rao, A.M., Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth (2001) J Mol. Neurosci., 14, pp. 175-182 Abarrategi, A., Gutiérrez, M.C., Moreno-Vicente, C., Hortigüela, M.J., Ramos, V., López-Lacomba, J.L., Ferrer, M.L., Monte, F., Multiwall carbon nanotube scaffolds for tissue engineering purposes (2008) Biomaterials, 29, pp. 94-102 Berridge, M.V., Herst, P.M., Tan, A.S., Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction (2005) Biotechnol Annu Rev, 11, pp. 127-152 Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Method, 65, pp. 55-63 Barltrop, J.A., Owen, T.C., 5-(3-Carboxymathoxyphenil)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl) tetrazolium, inner salt (MTS) and related analgs of 3-(4,5-dimethylthiazolyl)-2 5-diphenyltetrazolium bromide (MTT) reducing to purple water soluble formazans a cell-viability indicators (1991) Bioorg. Med. Chem. Lett., 1 (11), pp. 611-614 Borenfreund, E., Puener, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1984) J. Tissue Culture Method, 9, p. 1 Decker, T., Lohmann-Matthes, M.L., A quick and simple method 228 for the quantitation of lactate dehydrogenase release in measurements of cellular 229 cytotoxicity and tumor necrosis factor (TNF) activity (1988) J. Immunol. Methods, 15 (230), pp. 61-69 Alamar BlueTM product information pamphlet. BioSource International, Inc., USAO'Brien, J., Wilson, I., Orton, T., Pognan, F., Investigation of alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity (2000) Eur. J. Biochem, 267, pp. 5421-5426 Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein dye binding (1976) Annal Biochem, 72, pp. 248-254 Matejovicova, M., Mubagwa, K., Flameng, W., Effect of vanadate on protein determination by the commassie brilliant blue microasay procedure (1997) Annal Biochem, 245, pp. 252-254 De Nicola, M., Gattia, D.M., Belluci, S., De Bellis, G., Micciula, F., Pastore, R., Tiberia, A., Ghibelli, L., Effect of different carbon nanotubes on cell viability and proliferation (2007) Journal Physics Condens. Matter, 19, pp. 395013-395020 Mwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) Journal of Materials Chemistry, 17 (19), pp. 1894-1902 Zhang, X., Wang, X., Lu, Q., Fu, C., Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression (2008) Carbon, 46 (3), pp. 453-460 Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Physica S.Sol. B, 244 (11), pp. 4356-4359 Zhang, D., Yi, C., Zhang, J., Chen, Y., Yao, X., Yang, M., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, 18, pp. 475102-475111 Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion (1992) Cell, 69, pp. 11-25 Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M., Assembly and mechanosensory function of focal contacts (2001) Nat. Rev. Mol. Cell. Biol, 2, pp. 793-805 Krysko, D.V., Vanden Berghe, T., D' Herde, K., Vandenabeele, P., Apoptosis and necrosis: Detection, discrimination and phagocytosis (2008) Methods, 44, pp. 205-221 Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., Henson, P.M., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages (1992) J Immunol, 148 (7), pp. 2207-2216 Denecker, G., Vercammen, D., Steemans, M., Vanden Berghe, T., Brouckaert, G., Van Loo, G., Zhivotovsky, B., Vandenabeele, P., Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria (2001) Cell Death Differ, 8 (8), pp. 829-840 Kroemer, G., Reed, J.C., Mitochondrial control of cell death (2000) Nat Med, 6 (5), pp. 513-519 Van Loo, G., Demol, H., Van Gurp, M., Hoorelbeke, B., Schotte, P., Beyaert, R., Zhivotovsky, B., Vandenabeele, P., A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid (2002) Cell Death Differ, 9 (3), pp. 301-308 Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD (1998) Nature, 391 (6662), pp. 43-50 Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J., Mikos, A.G., Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering (2007) Biomaterials, 28 (28), pp. 4078-4090 Vanden, B.T., Declercq, W., Vandenabeele, P., NADPH oxidases: New players in TNIF-induced necrotic cell death (2007) Molecular Cell, 26 (6), pp. 769-771 Borm, P.J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Oberdorster, E., The potential risks of nanomaterials: a review carried out for ECETOC (2006) Part Fibre Toxicol, 3 (11), pp. 1-35 Lam, C.W., James, J.T., McCluskey, R., Hunter, R.I., Pulmonary toxicity of a single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134 Jia, G., Wang, H., Ya, N.L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X., Cytotoxicity of carbon nanomaterails: single-wall nanotube, multi-wall nanotube, and fullerene (2005) Environ Sci Technol, 39 (5), pp. 1378-1383 Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., Maynard, A., Baron, P., Exposure to carbon nanotube material :assessment of nanotube cytotoxicity using human keratinocyte cells (2003) J Toxicol. Envirom. Health A., 66, pp. 1909-1926 Bohm, L., Schild, H., Apoptosis: the complex scenario for a silent cell death (2003) Mol. Imaging Biol., 5, pp. 2-14 Coppola, S., Ghilbelli, L., GSH extrusion and and the mitochondrial pathway of apoptotic signalling (2000) Biochem Soc Trans, 28, pp. 56-61 Fiers, W., Beyaert, R., Declerq, W., Vandenabeele, P., More than one way to die: apoptosis, necrosis and reactive oxygen damage (1999) Oncogene, 18, pp. 719-730 Edinger, A.L., Thompson, C.B., Deat Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine. Second edition (2004), Academic Press, San DiegoMagrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Forro, L., Cellular toxicity of carbon-based nanomaterials (2006) Nano Lett.;, 6, pp. 1121-1125 Tian, F.R., Cui, D.X., Schwarz, H., Estrada, G.G., Kobayashi, H., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts (2006) Toxicol in Vitro, 20 (7), pp. 1202-1212 Brown, D.M., Kinloch, I.A., Bangert, U., Windle, A.H., Walter, D.M., Walker, G.S., An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis (2007) Carbon, 45 (9), pp. 1743-1756 Manna, S.K., Sarkar, S., Barr, J., Wise, K., Barrera, E.V., Jejelowo, O., Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes (2005) NanoLetters, 5 (9), pp. 1676-1684 Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., Beguin, F., In vitro studies of carbon nanotubes biocompatibility (2006) Carbon, 44 (1), pp. 106-1111 Price, R.A., Waid, M.C., Karen, M., Haberstroh, K.M., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887 Zanello, L.P., Zhao, B., Hu, H., Haddon, R.C., Bone cell proliferation on carbon nanotubes (2006) Nano Lett, 6, pp. 562-567 Naguib, N.N., Mueller, Y.M., Bojuczuc, P.M., Effect of carbon nanotube structure on the binding of antibodies (2005) Nanotech, 16, pp. 567-571 Giannona, S., Firkowska, I., Rojas-Chapana, J., Giersig, M., Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblasts-like cells (2007) J. Nanosc. and Nanotec., 7, pp. 1679-1683 Lobo, A.O., Antunes, E.F., Machado, A.H.A., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Cell viability and adhesion on as grown multi-wall carbon nanotube films (2008) Mater. Sci. Eng. C, 28 (2), pp. 264-269 Lobo, A.O., Antunes, E.F., Palma, M.B.S., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Biocompatibility of multi-walled carbon nanotubes films growth titanium and silicon surfaces (2008) Mater. Sci. Eng. C, 28 (4), pp. 532-538 Gabay, T., Jakobs, E., Bem-Jacob, E., Engineered self-organization of neuronal networks using carbon nanotube clusters (2005) Physica A, 21 (350), pp. 611-621 Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Fabrication and biocompatibility of carbon nanotube-based 3d networks as scaffolds for cell seeding and growth (2004) Nano Letters, 4, pp. 2233-2236 Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J Biol Chem, 278 (50), pp. 50212-50216 Cui, D.X., Tian, F.R., Ozkan, C.S., Wang, M., Gao, H.J., Effect of single wall carbon nanotubes on human HEK293 cells (2005) Toxicol Lett, 155 (1), pp. 73-85 Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol Lett, 160 (2), pp. 121-126 Worle-Knirsch, J.M., Pulskamp, K., And Krug, H.F., Oops they did it again! Carbon Nanotubes hoax scientists in viability Assays (2006) Nano Lett, 6, pp. 1261-1268 Casey, A., Davoren, M., Herzog, E., Lyng, F., Byrne, H., Chambers, G., Probing the interaction of single-walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45 (1), pp. 34-40 Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single-walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (7), pp. 1425-1432 Hurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: status,trends,and perspectives on the special issue (2006) Carbon, 44 (6), pp. 1028-1033 Monteiro-Riviere, N., Inman, A.O., Challenges for assessing carbon nanomaterial toxicity to the skin (2006) Carbon, 44, pp. 1070-1078 Zhang, L.W., Zeng, L., Barron, A.R., Monteiro-Riviere, N.A., Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes (2007) Int J Toxicol, 26 (2), pp. 103-113 Isobe, H., Tanaka, T., Maeda, R., Noiri, E., Solin, N., Yudasaka, M., Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates (2006) Angew Chem Int Ed Engl, 45 (40), pp. 6676-6680 Shim, M., Kam, N.W.S., Chen, R.J., Li, Y., Dai, H., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition (2002) Nano Lett, 2, pp. 285-288 Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro (2006) Toxicology Letters, 161 (2), pp. 135-142 Reich, S., Thomsen, C., Raman spectroscopy of graphite (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2271-2288 Tan, P.H., Dimovski, S., Gogotsi, Y., Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2289-2310 Jorio, A., Saito, R., Dresselhaus, G., Dresselhaus, M.S., Determination of nanotubes properties by Raman spectroscopy (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2311-2336 Thomsen, C., Reich, S., Maultzsch, J., Thomsen, C., Reich, S., Maultzsch, J., Philosophical transactions of the royal society a-mathematical physical and engineering sciences (2004), 362 (1824), pp. 2337-2359Kneipp, K., Kneipp, H., Dresselhaus, M.S., Lefrant, S., Surface-enhanced Raman scattering on single-wall carbon nanotubes (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2361-2373 Kuzmany, H., Pfeiffer, R., Hulman, M., Kramberger, C., Raman spectroscopy of fullerenes and fullerene-nanotube composites (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2375-2406 Ferrari, A.C., Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2477-2512 Beghi, M.G., Bottani, C.E., Low-frequency Raman and Brillouin spectroscopy from graphite, diamond and diamond-like carbons, fullerenes and nanotubes (2004) Philosophical transactions of the royal society a-mathematical physical and engineering sciences, 362 (1824), pp. 2513-2535 Colemana, J.N., Khana, U., Blaua, W.J., Gun'kob, Y.K., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites (2006) Carbon, 44 (9), pp. 1624-1652 Avouris, P., Chen, Z.H., Perebeinos, V., Carbon-based electronics (2007) Nature nanotechnology, 2 (10), pp. 605-615 Charlier, J.C., Blase, X., Roche, S., Electronic and transport properties of nanotubes (2007) Reviews of modern physics, 79, pp. 677-732 Terrones, M., Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications (2004) International materials reviews, 49, pp. 325-377 Dresselhaus, M.S., Eklund, P.C., Phonons in carbon nanotubes (2000) Advances in Physics, 49 (6), pp. 705-814 Terrones, H., López-Urías, F., Muñoz-Sandoval, E., Rodríguez-Manzo, J.A., Zamudio, A., Elías, A.L., Terrones, M., Magnetism in Fe-based and carbon nanostructures: Theory and applications (2006) Solid state sciences, 8 (3-4), pp. 303-320 Goze-Bac, C., Latila, S., Lauginieb, P., Jourdaina, V., Conardb, J., Duclauxb, L., Rubioc, A., Bernier, P., Magnetic interactions in carbon nanostructures (2002) Carbon, 40, pp. 1825-1842 Chen, X., Lee, G.S., Zettl, A., Bertozzi, C.R., Biomimetic Engineering of Carbon Nanotubes by Using Cell Surface Mucin Mimics (2004) Angewandte Chemie International Edition, 43 (45), pp. 6111-6116 House of Commons Science and Technology Committee. Too little too late? (2004), www.publications.parliament.uk/pa/cm200304/cmselect/cmsctech/56/56.pdf, Government Investment in Nanotechnology [08/09/15]Sinha, N., Ma, J.Z., Yeow, J.T.W., Carbon nanotube-based sensors (2006) Journal of nanoscience and nanotechnology, 6 (3), pp. 573-590 Xu, N.S., Huq, S.E., Novel cold cathode materials and applications (2005) Materials science & engineering R, 48, pp. 47-189 Kun, L.H., Wang, G.X., Guo, Z., Wang, J., Konstantinov, K., Nanomaterials for Lithium-ion Rechargeable Batteries (2006) Journal of Nanoscience and Nanotechnology, 6 (1), pp. 1-15 Wronski, Z.S., Materials for rechargeable batteries and clean hydrogen energy sources (2001) International materials reviews, 46 (1), pp. 1-49 Thostenson, E.T., Ren, Z.F., Chou, T.W., Advances in the science and technology of carbon nanotubes and their composites: a review (2001) Composites science and technology, 61 (13), pp. 1899-1912 Njuguna, B., Pielichowski, K., Polymer nanocomposites for aerospace applications: Properties (2003) Advanced engineering materials, 5 (11), pp. 769-778 Moniruzzaman, M., Winey, K.I., Polymer nanocomposites containing carbon nanotubes (2006) Macromolecules, 39, pp. 5194-5205 Grobert, N., Carbon nanotubes-becoming clean (2007) Materials Today, 10 (1-2), pp. 28-35 Paradise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials and Design, 28, pp. 1477-1489 Reich, S., Li, L., Robertson, J., Control the chirality of carbon nanotubes by epitaxial growth (2006) Chemical physics letters, 421 (4-6), pp. 469-472 Terrones, M., Controlling nanotube chirality and crystallinity by doping (2005) Small, 1 (11), pp. 1032-1034 Thayer, A.M., Carbon Nanotubes by the metric ton (2007) Chemical & Engineering News: Business, 85 (46), pp. 29-35 (2009), http://www.freedoniagroup.com/DocumentDetails.aspx?ReferrerId=FG-01study id=2019, Freedonia Group. World Nanotubes to Demand and Sales Forecasts, Market Share, Market Size Market Leaders. 2006 [08/09/15]See, C.H., Harris, A.T., A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition (2007) Ind. Eng. Chem. Res., 46, pp. 997-1012 Dai, L., Patil, A., Gong, X., Guo, Z., Liu, L., Liu, Y., Zhu, D., Aligned Nanotubes (2003) Chem Phys Chem, 4 (11), pp. 1150-1169 Melechko, A.V., Merkulov, V.I., McKnight, T.E., Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly Journal of applied physics, 97. , 041301-1-041301-39 Huczko, A., Synthesis of aligned carbon nanotubes (2002) Applied physics a-materials science & processing, 74 (5), pp. 617-638 Fu, K.F., Sun, Y.P., Dispersion and solubilization of carbon nanotubes (2003) Journal of nanoscience and nanotechnology, 3 (5), pp. 351-364 Vaisman, L., Wagner, H.D., Marom, G., The role of surfactants in dispersion of carbon nanotubes (2006) Advances in colloid and interface science, 128, pp. 37-46 Andrew, R., Jacquesa, D., Qianb, D., Dickeyb, E.C., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures (2001) Carbon, 39, pp. 1681-1687 Huang, W., Wang, Y., Luo, G., Wei, F., 99 9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing (2003) Carbon, 41 (13), pp. 2585-2590 Sinnott, S.B., Chemical functionalization of carbon nanotubes (2002) Journal of nanoscience and nanotechnology, 2 (2), pp. 113-123 Ye, J.S., Sheu, F.S., Functionalization of CNTs: New routes towards the development of novel electrochemical sensors (2006) Current nanoscience, 2 (4), pp. 319-327 Liu, H., Zhai, J., Jiang, L., Wetting and ant-wetting on aligned carbon nanotubes films (2006) Soft Matterials, 2, pp. 811-821 Hong, Y.C., Shin, D.H., Cho, S.C., Uhm, H.S., Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability (2006) Chemical Physics Letters, 427 (4-6), pp. 390-393 Valentini, L., Lozzi, L., Cantalini, C., Armentano, I., Kenny, J.M., Ottaviano, L., Santucci, S., Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films (2003) Thin Solid Films, 436 (1), pp. 95-100 Xu, T., Yang, J., Liu, J., Fu, Q., Surface modification of multi-walled carbon nanotubes by O2 plasma. (2007) (2007) Applied Surface Science, 253 (22), pp. 8945-8951 Vohrer, U., Holmes, J., Li, Z., Teh, A., Papakonstantinou, P., Ruether, M., Blau, W., Tailoring the Wettability of Carbon Nanotube Powders, Bucky Papers and Vertically Aligned Nanofibers by Plasma Assisted Functionalization (2007) Journal of nanotechnology, 3, pp. 1-12 Ebbesen, T.W., Ajayan, P.M., Nature (1992) Large-scale synthesis of carbon nanotubes, 358, pp. 220-222 Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Chapelle, M.L., Lefrant, S., Deniard, P., Fischer, J.E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique (1997) Nature, 388, pp. 756-758 Ando, Y., Zhao, X.L., Synthesis of carbon nanotubes by arc-discharge method (2006) New diamond and frontier carbon technology, 16 (3), pp. 123-137 Zhang, Y., Gu, H., Iijima, S., Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere (1998) Applied physics letters, 73 (26), pp. 3827-3829 Kocabas, C., Meitl, M.A., Gaur, A., Shim, M., Rogers, J.A., Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation (2004) Nano Lett, 4 (12), pp. 2421-2426 Terranova, M.L., Sessa, V., Rossi, M., The world of carbon nanotubes: An overview of CVD growth methodologies (2006) Chemical vapor deposition, 12 (6), pp. 315-325 Varadan, V.K., Xie, J.N., Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD (2002) Smart materials & structures, 11 (4), pp. 610-616 Su, M., Zheng, B., Liu, J., A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity (2000) Chemical Physics Letters, 322 (5), pp. 321-326 Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H., Large scale CVD synthesis of single-walled carbon nanotubes (1999) Journal of Physical Chemistry B, 103 (31), pp. 6484-6492 Journet, C., Bernier, P., Production of carbon nanotubes (1998) Applied Physics A-Materials Science & Processing, 67 (1), pp. 1-9 Cui, S., Scharff, P., Siegmund, C., Schneider, D., Risch, K., Klötzer, S., Spiess, L., Schawohl, J., Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere (2004) Carbon, 42 (5-6), pp. 931-939 Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E., Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process (2001) Applied Physics A: Materials Science and Processing, 72 (5), pp. 573-580 Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., Ichihashi, T., Iijima, S., Mechanism of the Effect of NiCo, Ni and Co Catalysts on the Yield of Single-Wall Carbon Nanotubes Formed by Pulsed Nd:YAG Laser Ablation (1999) Journal of Physical Chemistry B, 103 (30), pp. 6224-6229 Eklund, P.C., Pradhan, B.K., Kim, U.J., Xiong, Q., Fischer, J.E., Friedman, A.D., Holloway, B.C., Smith, M.W., Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser (2002) Nano Letters, 2 (6), pp. 561-566 Maser, W.K., Munoz, E., Benito, A.M., Martinez, M.T., de la Fuente, G.F., Maniette, Y., Anglaret, E., Sauvajol, J.L., Production of high-density single-walled nanotube material by a simple laser-ablation method (1998) Chemical Physics Letters, 292, pp. 587-593. , (4,5,6) Bolshakov, A.P., Uglov, S.A., Saveliev, A.V., Konov, V.I., Gorbunov, A.A., Pompe, W., Graff, A., A novel CW laser-powder method of carbon single-wall nanotubes production (2002) Diamond and Related Materials, 11 (3-6), pp. 927-930