dc.creatorIdehara A.Y.
dc.creatorJunior A.A.D.S.
dc.creatorDe Souza Rodrigues A.
dc.date2009
dc.date2015-06-26T13:34:32Z
dc.date2015-11-26T15:33:25Z
dc.date2015-06-26T13:34:32Z
dc.date2015-11-26T15:33:25Z
dc.date.accessioned2018-03-28T22:41:58Z
dc.date.available2018-03-28T22:41:58Z
dc.identifier
dc.identifierSae Technical Papers. , v. , n. , p. - , 2009.
dc.identifier
dc.identifier10.4271/2009-36-0155
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877569371&partnerID=40&md5=e72bb395c1589cec6826454ab6e3b6b5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91991
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91991
dc.identifier2-s2.0-84877569371
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262738
dc.descriptionIn the last two decades, torsional and axial vibrations of the engine crankshaft have become more severe than before, because of the increase of the engine speed and mean effective gas pressure, and reduction of engine size. Under these new conditions, more severe forces and torques are applied to the crankshaft. That forces and torques can increase the noise radiation, wear and damage of the components connected to crankshaft. This paper presents a multi-degree-of-freedom model of crankshaft under axial and torsional excitations. The motion equation of the system is solved numerically with Newmark beta Method in Matlab environment. The interaction with axial bearing is also considered, the Reynods Equation that govern the generation of hydrodynamic pressure in axial bearing is solved with Finite Difference Method and the boundary condition of Sommerfeld (pressure equal to zero at the boundary). A simulation of 4-cylinder crankshaft is presented. Results are shown in terms of crankshaft's displacement and pressure in axial bearing. Copyright © 2009 SAE International.
dc.description
dc.description
dc.description
dc.description
dc.descriptionVan Dort, D., Visser, N.J., Crankshaft coupled free torsional-axial vibration of ship's propulsion system (1963) I.S.P., 10, p. 107
dc.descriptionYing, Q.G., Zhou, M.R., Li, B.Z., Xu, J.F., Chen, M.X., The coupled torsional vibrations of the morden long-stroke marine engine crankshaft (1995) Marine Engineering, 1, pp. 40-47
dc.descriptionLi, B.Z., Ying, Q.G., Zhou, M.R., Xu, J.F., Chen, M.X., The coupled torsional vibrations of the morden long-stroke marine engine crankshaft: Accident analysis of coupled vibration Marine Engineering, 6, pp. 37-41
dc.descriptionBukovnik, S., Dorr, N., Caika, V., Bartz, W.J., Loibnegger, B., Analysis of diverse simulation models for combustion engine journal bearings and the influence of oil condition (2005) Tribology International, 39, pp. 820-826
dc.descriptionGalvão, M.M., Schwart, V.A., Análise do Comportamento Operacional de Mancais Axiais Hidrodinâmicos de Sapatas Setoriais Pivotadas (2006) Máster Degree Thesis, , Itajubá
dc.descriptionOffner, G., Lechner, M., Mahmoud, K., Prlebsch, H.H., Surface contact analysis in axial thrust bearings based on different numerical interpolation approaches Proc. IMechE, Journal of Multi-body Dynamics, 221
dc.descriptionShu, G.Q., Liang, X.Y., Lu, X.C., Axial vibration of high-speed automotive engine crankshaft (2007) International Journal of Vehicle Design, 45 (4), p. 542
dc.descriptionChoi, K.S., Pan, J., Simulations of stress distributions in crankshaft sections under fillet rolling and bending fatigue tests (2009) International Jounal of Fatigue, 31, pp. 544-557
dc.languageen
dc.publisher
dc.relationSAE Technical Papers
dc.rightsfechado
dc.sourceScopus
dc.titleLongitudinal Effort In Crankshaft
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución