dc.creatorBerci C.D.
dc.creatorBottura C.P.
dc.date2009
dc.date2015-06-26T13:34:19Z
dc.date2015-11-26T15:33:16Z
dc.date2015-06-26T13:34:19Z
dc.date2015-11-26T15:33:16Z
dc.date.accessioned2018-03-28T22:41:49Z
dc.date.available2018-03-28T22:41:49Z
dc.identifier9789896740023
dc.identifierArtificial Neural Networks And Intelligent Information Processing - Proc. 5th Int. Workshop On Artificial Neural Networks And Intelligent Information Processing - Anniip 2009, Held With Icinco 2009. , v. , n. , p. 3 - 12, 2009.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-74549132465&partnerID=40&md5=33ac4e90272dd11305f45a5fbe1afea0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91925
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91925
dc.identifier2-s2.0-74549132465
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262706
dc.descriptionThe use of genetic algorithms in ANNs training is not a new subject, several works have already accomplished good results, however not competitive with procedural methods for problems where the gradient of the error is well defined. The present document proposes an alternative for ANNs training using GA(Genetic Algorithms) to evolve the training process itself and not to evolve directly the network parameters. This way we get quite superior results and obtain a method competitive with these, usually used to training ANNs.
dc.description
dc.description
dc.description3
dc.description12
dc.descriptionBattiti, R., Masulli, F., Bfgs optimization for faster and automated supervised learning (1990) INNC 90 Paris, International Neural Network Conference, pp. 757-760
dc.descriptionDalto Berci, C., (2008) Observadores Inteligentes de Estado: Propostas, , Tese de Mestrado, LCSI/FEEC/UNICAMP, Campinas, Brasil
dc.descriptionDalto Berci, C., Pascoli Bottura, C., Observador inteligente adaptativo neural no baseado em modelo para sistemas no lineares (2008) Proceedings of 7th Brazilian Conference on Dynamics, Control and Applications. Présidente Prudente, 7, pp. 209-215. , Brasil
dc.descriptionBranke, J., Evolutionary algorithms for neural network design and training (1995) 1st Nordic Workshop on Genetic Algorithms and its Applications, , Vaasa, Finland, January
dc.descriptionChalmers, D.J., The evolution of learning: An experiment in genetic connectionism (1990) Proceedings of the 1990 Connectionist Summer School, pp. 81-90
dc.descriptionDarwin, C., (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, , John Murray, London
dc.descriptionDennett, D.C., (1995) Darwin's Dangerous Idea: Evolution and the Meanings of Life, , Penguim Books
dc.descriptionFiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernndez, E., Garca-Martnez, R., Finding optimal neural network architecture using genetic algorithms (2004) Software & Knowledge Engineering Center. Buenos Aires Institute of Technology. Intelligent Systems Laboratory. School of Engineering. University of Buenos Aires
dc.descriptionFyfe, C., (1996) Artificial Neural Network, , Department of Computing and Information Systems, The University of Paisley, Edition 1.1
dc.descriptionLuenberger, D.G., (1984) Linear and Nonlinear Programming, , Addison-Wesley, 2nd edition
dc.descriptionMller, M.F., Learning by conjugate gradients (1990) The 6th International Meeting of Young Computer Scientists
dc.descriptionMller, M.F., A scaled conjugate gradient algorithm for fast supervised learning (1990) Computer Science Department, University of Aarhus Denmark, 6, pp. 525-533
dc.descriptionMontana, D., Davis, L., Training feedforward neural networks using genetic algorithms (1989) Proceedings of the International Joint Conference on Artificial Intelligence, pp. 762-767
dc.descriptionRumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y., (1995) Backpropagation: The basic theory, , Lawrence Erlbaum Associates, Inc
dc.descriptionRumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel distributed processing: Exploration in the microstructure of cognition, pp. 318-362. , Eds. D.E. Rumelhart, J.L McClelland, MIT Press, Cambridge, MA
dc.descriptionSeiffert, U., Multiple layer perceptron training using genetic algorithms (2001) ESANN'2001 proceedings - European Symposium on Artificial Neural Networks, pp. 159-164
dc.descriptionZhou, Z.-H., Wu, J.-X., Jiang, Y., Chen, S.-F., Genetic algorithm based selective neural network ensemble (2001) Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2, pp. 797-802
dc.languageen
dc.publisher
dc.relationArtificial Neural Networks and Intelligent Information Processing - Proc. 5th Int. Workshop on Artificial Neural Networks and Intelligent Information Processing - ANNIIP 2009, held with ICINCO 2009
dc.rightsfechado
dc.sourceScopus
dc.titleEvolving Gradient A New Approach To Perform Neural Network Training
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución