dc.creatorCunha S.B.
dc.creatorMatt C.G.C.
dc.creatorMorooka C.K.
dc.creatorFranciss R.
dc.creatorTsukada R.I.
dc.date2009
dc.date2015-06-26T13:34:23Z
dc.date2015-11-26T15:33:10Z
dc.date2015-06-26T13:34:23Z
dc.date2015-11-26T15:33:10Z
dc.date.accessioned2018-03-28T22:41:43Z
dc.date.available2018-03-28T22:41:43Z
dc.identifier9780791843451
dc.identifierProceedings Of The International Conference On Offshore Mechanics And Arctic Engineering - Omae. , v. 5, n. , p. 683 - 693, 2009.
dc.identifier
dc.identifier10.1115/OMAE2009-79756
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77952925554&partnerID=40&md5=371397e658044a9f5b8953c5ea58461b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91946
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91946
dc.identifier2-s2.0-77952925554
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262678
dc.descriptionThe study presents a closed-form solution for the vibration of a simply-supported beam due to vortex shedding, assuming linear elasticity and considering fluid damping. The in-line and cross-flow fluid forces are coupled to the beam equation as harmonic nonhomogeneous terms. Experimental results of 2 DOF VIV of a flexible small scale pipe in a uniform stream are presented for perpendicular an oblique (at 60 degrees of the translation direction) pipe. The range of relative velocity is from 1 to 10. The performance of two fluid damping models (Venugopal, 1996; Blevins - modified, 1990) is evaluated by comparing their predictions to the measurements of the in-line and cross-flow oscillations. Finally, ranges for in-line and cross-flow force coefficients are proposed and compared to the literature. Copyright © 2009 by ASME.
dc.description5
dc.description
dc.description683
dc.description693
dc.descriptionOcean, Offshore, and Arctic Engineering Division, ASME
dc.descriptionBlevins, R.D., (2001) Flow Induced Vibrations, , Krieger Publishing
dc.descriptionKing, R., A Review of Vortex Shedding Research and its Application (1977) Ocean Engn., 4, pp. 141-171
dc.descriptionSarpkaya, T., A critical review of the intrinsic nature of vortex-induced vibrations (2004) Journal of Fluids and Structures, 19, pp. 389-447
dc.descriptionWeaver Jr., W., Timoshenko, S.P., Young, D.H., (1990) Vibration Problems in Engineering, , 5th Ed., J. Willey
dc.descriptionJauvits, N., Williamson, C.H.K., The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping (2004) J. Fluid Mech, 509, pp. 23-62
dc.descriptionVandiver, J.K., Jong, J.Y., The Relationship between In-Line and Cross-Flow Vortex-Induced Vibration of Cylinders (1987) Journal of Fluids and Structures, 1, pp. 381-389
dc.descriptionVenugopal, M., (1996) Damping and Response of a Flexible Cylinder in a Current, , Ph. D. Thesis, Dept of Ocean Eng., Massachusetts Institute of Technology
dc.descriptionLarsen, C.M., Vikestad, K., Yttervik, R., Passano, E., Baarholm, G.S., (2005) Vivana Theory Manual, , Norwegian Marine Technology Research Institute
dc.descriptionVandiver, J.K., Li, L., (2005) Shear 7 V4.4 Program Theoretical Manual, , Massachusetts Institute of Technology
dc.descriptionVikestad, K., Larsen, C.M., Vandiver, J.K., Norwegian Deepwater Program: Damping of Vortex-Induced Vibrations (2000) Offshore Technology Conference 2000, OTC 11998
dc.descriptionMorison, J.R., O'Brien, M.P., Johnson, J.W., Schaaf, S.A., (1950) The Force Exerted by Surface Waves on Piles, Petroleum Transactions, 189, pp. 149-154. , AIME
dc.descriptionIwan, W.D., Blevins, R.D., A Model for Vortex Induced Oscillation of Structures (1974) Journal of Applied Mechanics, pp. 581-586
dc.languageen
dc.publisher
dc.relationProceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
dc.rightsfechado
dc.sourceScopus
dc.titlePipeline Viv: Analytical Solution, Experiments And Parameter Identification
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución