dc.creatorde Maria Felix J.
dc.creatorPapini-Terzi F.S.
dc.creatorRocha F.R.
dc.creatorVencio R.Z.N.
dc.creatorVicentini R.
dc.creatorNishiyama Jr. M.Y.
dc.creatorUlian E.C.
dc.creatorSouza G.M.
dc.creatorMenossi M.
dc.date2009
dc.date2015-06-26T13:33:28Z
dc.date2015-11-26T15:32:39Z
dc.date2015-06-26T13:33:28Z
dc.date2015-11-26T15:32:39Z
dc.date.accessioned2018-03-28T22:41:07Z
dc.date.available2018-03-28T22:41:07Z
dc.identifier
dc.identifierTropical Plant Biology. , v. 2, n. 2, p. 98 - 109, 2009.
dc.identifier19359756
dc.identifier10.1007/s12042-009-9031-8
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70349998465&partnerID=40&md5=56a5dc3bbc7d9b637a10180955ae6614
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91726
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91726
dc.identifier2-s2.0-70349998465
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262532
dc.descriptionSucrose is the major product of photosynthesis in many higher plants. It is transported from the source tissue through the phloem to various sink tissues to support plant growth, development and reproduction. Knowledge on the signal transduction pathways involved in sucrose synthesis in mature leaves is limited. Using a microarray approach, we analyzed the expression profiles of 1920 sugarcane genes encoding signal transduction elements, transcription factors and stress-related proteins. We used individuals from a population segregating for sugar content and gene expression profiles were obtained from seven individuals with highest and seven with lowest sugar content. Surprisingly, from the 24 differentially expressed genes, 19 were more expressed in plants containing low-sugar content. Three of these genes encoded 14-3-3 like proteins, which have been found to reduce sucrose phosphate synthase (SPS) activity. Another encoded an SNF1-related protein similar to a protein kinase that phosphorylates SPS in vitro making it a target for the interaction with 14-3-3 proteins. The up-regulation of eight stress related genes in the lower sugar content plants supports a view that sugar levels modulate a complex signal transduction network that seems to involve responses that are related to stress. Evidence that hormone signaling is related to the sucrose content was also found. These data reinforced the usefulness of genomic approaches to uncover how sucrose metabolism can be regulated in sugarcane. © Springer Science + Business Media, LLC 2009.
dc.description2
dc.description2
dc.description98
dc.description109
dc.descriptionAltschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acid Res, 25, pp. 3389-3402
dc.descriptionBachmann, M., Huber, J.L., Athwal, G.S., Wu, K., Ferl, R.J., Huber, S.C., 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases (1996) FEBS Lett, 398, pp. 26-30
dc.descriptionCarson, D.L., Botha, F.C., Genes expressed in sugarcane maturing internodal tissue (2002) Plant Cell Rep, 20, pp. 1075-1081
dc.descriptionCarson, D.L., Huckett, B.I., Botha, F.C., Sugarcane ESTs differentially expressed in immature and maturing internodal tissue (2002) Plant Sci, 162, pp. 289-300
dc.descriptionCasu, R.E., Grof, C.P.L., Rae, A.L., McIntyre, C.L., Dimmock, C.M., Manners, J.M., Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis (2003) Plant Mol Biol, 52, pp. 371-386
dc.descriptionCasu, R.E., Dimmock, C., Chapman, S., Grof, C., McIntyre, C.L., Bonnett, G., Manners, J., Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling (2004) Plant Mol Biol, 54, pp. 503-517
dc.descriptionCasu, R.E., Manners, J.M., Bonnett, G.D., Jackson, P.A., McIntyre, C.L., Dunne, R., Chapman, S.C., Grof, C.P.L., Genomics approaches for the identification of genes determining important traits in sugarcane (2005) Field Crop Res, 92, pp. 137-147
dc.descriptionChen, F., Dixon, R., Lignin modification improves fermentable sugar yields for biofuel production (2007) Nat Biotechnol, 25, pp. 759-761
dc.descriptionClarke MA, Tsang WSC, Parrish FW (1983) High performance liquid chromatography in sugar factories and refineries. In: Proc Sugar Ind Technol 42nd Annual Meeting, Oak Harbor, WA, p 121-142Dale, S., Arro, M., Becerra, B., Morrice, N.G., Boronat, A., Hardie, D.G., Ferrer, A., Bacterial expression of the catalytic domain of 3-hydroxy-3- methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase (1995) Eur J Biochem, 233, pp. 506-513
dc.descriptionEhness, R., Ecker, M., Godt, D., Roitsch, T., Glucose and stress independently regulate source/sink relations and defense mechanisms via signal transduction pathways involving protein phopsphorylation (1997) The Plant Cell, 9, pp. 1825-1841
dc.descriptionGarcia, A.A.F., Kido, E.A., Meza, A.N., Souza, H.M.B., Pinto, L.R., Pastina, M.M., Leite, C.S., Souza, A.P., Development of an integrated genetic map of a sugarcane (Saccharum spp) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases (2006) Theor Appl Genet, 112, pp. 298-314
dc.descriptionGibson, S.I., Control of plant development and gene expression by sugar signaling (2005) Curr Opin Plant Biol, 8, pp. 93-102
dc.descriptionHalford, N.G., Hardie, D.G., SNF1-related protein kinases: Global regulators of carbon metabolism in plants? (1998) Plant Mol Biol, 37, pp. 735-748
dc.descriptionHalford, N.G., Paul, M.J., Carbon metabolite sensing and signaling (2003) Plant Biotechnol J, 1, pp. 381-398
dc.descriptionHalford, N.G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R.S., Paul, M., Zhang, Y., Metabolic signaling and carbon partitioning: Role of Snf1-related (SnRK1) protein kinase (2003) J Exp Bot, 54, pp. 467-475
dc.descriptionHo, S.L., Chao, Y.C., Tong, W.F., Yu, S.M., Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms (2001) Plant Physiol, 125, pp. 877-890
dc.descriptionHuber, J.L., Huber, S.C., Nielsen, T.H., Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity (1989) Arch Biochem Biophys, 270, pp. 681-690
dc.descriptionIhaka, R., Gentleman, R., R: A language for data analysis and graphics (1996) J Comput Graph Stat, 5, pp. 299-314
dc.descriptionJacobsen, K.R., Fisher, D.G., Maretzki, A., Moore, P.H., Developmental-changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage (1992) Botanica Acta, 105, pp. 70-80
dc.descriptionJansen, R.C., Nap, J.P., Genetical genomics: The added value from segregation (2001) Trends Genet, 17, pp. 388-391
dc.descriptionKoch, K.E., Carbohydrate-modulated gene expression in plants (1996) Annu Rev Plant Physiol Plant Mol Biol, 47, pp. 509-540
dc.descriptionKoch, K.E., Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development (2004) Curr Opin Plant Biol, 7, pp. 235-246
dc.descriptionLiang, L.Z., Lai, Z., Ma, W.S., Zhang, Y.S., Xue, Y.B., AhSL28, a senescence- and phosphate starvation-induced S-like RNase gene in Antirrhinum (2002) BBA-Gene Struct Expr, 1579, pp. 64-71
dc.descriptionLunn, J.E., Furbank, R.T., Sucrose biosynthesis in C-4 plants (1999) New Phytol, 143, pp. 221-237
dc.descriptionMcCormick, A.J., Cramer, M.D., Watt, D.A., Sink strength regulates photosynthesis in sugarcane (2006) New Phytol, 171, pp. 759-770
dc.descriptionMcCormick, A.J., Cramer, M.D., Watt, D.A., Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane (2007) Ann Bot, 101, pp. 89-102
dc.descriptionMcCormick, A.J., Cramer, M.D., Watt, D.A., Differential expression of genes in the leaves of sugarcane in response to sugar accumulation (2008) Trop Plant Biol, 1, pp. 142-158. , doi:10.1007/s12042-008-9013-2
dc.descriptionMenossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.A., Souza, G.M., Sugarcane functional genomics: Gene discovery for agronomic trait development (2008) Int J Plant Genomics, , doi:10.1155/2008/458732
dc.descriptionMeyers, B.C., Galbraith, D.W., Nelson, T., Agrawal, V., Methods for transcriptional profiling in plants. Be fruitful and replicate (2004) Plant Physiol, 135, pp. 637-652
dc.descriptionMoore, P.H., Integration of sucrose accumulation processes across hierarchical scales: Towards developing an understanding of the gene-to-crop continuum (2005) Field Crops Res, 92, pp. 119-135
dc.descriptionMoorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., MacKintosh, C., Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins (1999) Plant J, 18, pp. 1-12
dc.descriptionMorsy, M.R., Almutairi, A.M., Gibbons, J., Yun, S.J., los Reyes, B.G., The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature (2005) Gene, 344, pp. 171-180
dc.descriptionNogueira, F.T.S., De Rosa, V.E., Menossi, M., Ulian, E.C., Arruda, P., RNA expression profiles and data mining of sugarcane response to low temperature (2003) Plant Physiol, 132, pp. 1811-1824
dc.descriptionOsuna, D., Usadel, B., Morcuende, R., Gibon, Y., Bläsing, O.E., Höhne, M., Günter, M., Stitt, M., Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings (2007) Plant J, 49, pp. 463-491
dc.descriptionPapini-Terzi, F.S., Rocha, F.R., Vencio, Z.N., Oliveira, K.C., Felix, J.M., Vicentini, R., Rocha, C.D., Souza, G.M., Transcription profiling of signal transduction-related genes in sugarcane tissues (2005) DNA Res, 12, pp. 27-38
dc.descriptionPapini-Terzi FS, Felix JM, Rocha FR, Waclawovsky AJ, Ulian EC, Chabregas SM, Falco MC, Nishiyama-Junior MY, Vencio RZN, Vicentini R, Menossi M. and Souza GM (2007) The SUCEST-FUN Project: identifying genes that regulate sucrose content in sugarcane plants. In: XXVI International Society of Sugarcane Technologists Congress, 2007, Durban. Proc. Int. Soc. Sugar Cane Technol., vol 26Papini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Felix, J.M., Branco, D.S., Waclawovsky, A.J., Del Bem, L.E.V., Souza, G.N., Sugarcane genes associated with sucrose content (2009) BMC Genomics, 10, p. 120
dc.descriptionPaul, M.J., Foyer, C.H., Sink regulation of photosynthesis (2001) J Exp Bot, 52, pp. 1383-1400
dc.descriptionPearce, R.S., Molecular analysis of acclimation to cold (1999) Plant Growth Regul, 29, pp. 47-76
dc.descriptionPessoa Junior, A., Roberto, I.C., Menossi, M., Santos, R.R., Ortega Filho, S., Penna, T.C.V., Perspectives on bioenergy and biotechnology in Brazil (2005) Appl Biochem Biotechnol, 121, pp. 59-70
dc.descriptionPrice, J., Laxmi, A., St Martin, S.K., Jang, J.C., Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis (2004) Plant Cell, 16, pp. 2128-2150
dc.descriptionRolland, F., Moore, B., Sheen, J., Sugar sensing and signaling in plants (2002) Plant Cell, 14, pp. S185-S205
dc.descriptionRolland, F., Baena-Gonzalez, E., Sheen, J., Sugar sensing and signaling in plants: Conserved and novel mechanisms (2006) Annu Rev Plant Biol, 57, pp. 675-709
dc.descriptionSambrook, J., Fritsch, E.F., Maniats, T., (1989) Molecular cloning: A laboratory manual, , New York: Cold Spring Harbor
dc.descriptionSmeekens, S., Sugar-induced signal transduction in plants (2000) Annu Rev Plant Physiol Plant Mol Biol, 51, pp. 49-81
dc.descriptionSouza, G.M., Simoes, A.C.Q., Oliveira, K.C., Garay, H.M., Fiorini, L.C., Gomes, F.D., Nishiyama-Junior, M.Y., da Silva, A.M., The sugarcane signal transduction (SUCAST) catalogue: Prospecting signal transduction in sugarcane (2001) J Genet Mol Biol, 24, pp. 25-34
dc.descriptionRocha, F.R., Signal transduction-related responses to phytohormones and environmental challenges in sugarcane (2007) BMC Genomics, 8, p. 71
dc.descriptionTai, P.Y.P., Miller, J.D., Germplasm diversity among four sugarcane species for sugar composition (2002) Crop Sci, 42, pp. 958-964
dc.descriptionThum, K., Shin, M., Palenchar, P., Kouranov, A., Coruzzi, G., Genome-wide investigation of light and carbon signaling interactions in Arabidopsis (2004) Genome Biol, 5, pp. R10
dc.descriptionvan Dillewijn C (1952) Botany of sugarcane. Walthan Mass, ed (USA)Vencio, R.Z.N., Koide, T., HTself: Self-Self based statistical test for low replication microarray studies (2005) DNA Res, 12, pp. 211-214
dc.descriptionVettore, A.L., da Silva, F.R., Kemper, E.L., Souza, G.M., da Silva, A.M., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735
dc.descriptionVicentini, R., de Maria Felix, J., Dornelas, M.C., Menossi, M., Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content (2009) Plant Cell Rep, 28, pp. 481-491
dc.descriptionYang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation (2002) Nucleic Acids Res, 30, pp. e15
dc.descriptionYu, S.M., Cellular and genetic responses of plants to sugar starvation (1999) Plant Physiol, 121, pp. 687-693
dc.languageen
dc.publisher
dc.relationTropical Plant Biology
dc.rightsfechado
dc.sourceScopus
dc.titleExpression Profile Of Signal Transduction Components In A Sugarcane Population Segregating For Sugar Content
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución