dc.creatorSpadotto A.A.
dc.creatorPereira J.C.
dc.creatorGuido R.C.
dc.creatorPapa J.P.
dc.creatorFalcao A.X.
dc.creatorGatto A.R.
dc.creatorCola P.C.
dc.creatorSchelp A.O.
dc.date2008
dc.date2015-06-30T19:22:32Z
dc.date2015-11-26T15:32:03Z
dc.date2015-06-30T19:22:32Z
dc.date2015-11-26T15:32:03Z
dc.date.accessioned2018-03-28T22:40:32Z
dc.date.available2018-03-28T22:40:32Z
dc.identifier9781424416882
dc.identifier2008 3rd International Symposium On Communications, Control, And Signal Processing, Isccsp 2008. , v. , n. , p. 735 - 740, 2008.
dc.identifier
dc.identifier10.1109/ISCCSP.2008.4537320
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50649108366&partnerID=40&md5=111edb38ee340254e9dc52b15cfc34cf
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105984
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105984
dc.identifier2-s2.0-50649108366
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262388
dc.descriptionThe swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.
dc.description
dc.description
dc.description735
dc.description740
dc.descriptionLogemann, J.A., (1983) Evaluation and treatment of swallowing disorders, , College- Hill Press
dc.descriptionPlatt, J., (2001) Dysphagia Management for Long-Term Care: A Manual for Nurses and Other Healthcare Professionals, Clinical and Educational Services
dc.descriptionFurkim, A.M., Silva, R.G., (1999) Programas de reabilitacão em disfagia neurogênica, , Frôntis Editorial
dc.descriptionChen, M.Y.M., Ott, D.J., Peele, V.N., Gelfand, D.W., Oropharynx in pacients with cerebrovascular disease: Evaluation with videofluoroscopy (1990) Radiology, 176, pp. 38-47
dc.descriptionJ.B. Palmer and A.S. Duchane, Rehabilitation of swallowing disorders due to stroke, hys. Med. Rehab.Clin. N. Amer, 2, 1991Horner, J., Buoyer, F.G., Alberts, M.J., Helms, M.J., Dysphagia folowing brain stem stroke: Clinical correlates and outcome (1991) Arch Neurol, 48, pp. 1170-1173
dc.descriptionBuchhloz, D.W., (1997) Neurologic disordes of swallowing, pp. 37-62. , pp
dc.descriptionVeis, S.L., Logemann, J.A., Swallowing disorders in persons with cerebrovascular accident (1985) Arch Phys Med Rehabil, 66, pp. 372-376
dc.descriptionGordon, C., Hewer, R.L., Wade, D.T., Dysphagia in acute stroke (1987) Brazilian Medical Journal, pp. 3411-3414
dc.descriptionSilva, R.G., Disfagia neurogênica em adultos: Uma proposta para avaliacão clínica (1999) Disfagias Orofaríngeas, pp. 35-47
dc.descriptionCichero, J.A.Y., Murdoch, B.E., The physiologic cause of swallowing sounds: Answers from heart sounds and vocal tract acoustics (1998) Dysphagia, 13, pp. 39-52
dc.descriptionYoumans, S.R., Stierwalt, J.A.G., The physiologic cause of swallowing sounds: Answers from heart sounds and vocal tract acousticsan acoustic profile of normal swallowing (2005) Dysphagia, 20, pp. 195-209
dc.descriptionLazareck, L.J., Moussavi, Z., Classification of normal and dysphagic swallows by acoustical means (2004) IEEE Transactions on Biomedical Engineering, 51
dc.descriptionKuncheva, L.I., (2004) Combining Pattern Classifiers: Methods and Algorithms, , Wiley-Interscience
dc.descriptionAboofazeli, M., Moussavi, Z., Automated extraction of swallowing sounds using a wavelet-based filter (2006) Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, pp. 5607-5610
dc.descriptionPapa, J.P., Falcão, A.X., Miranda, P.A.V., Suzuki, C.T.N., Mascarenhas, N.D.A., Design of robust pattern classifiers based on pptimum-path forests (2007) Mathematical Morphology and its Applications to Signal and Image Processing (ISMM), pp. 337-348. , MCT/INPE
dc.descriptionPapa, J.P., Falcão, A.X., Suzuki, C.T.N., Mascarenhas, N.D.A., A discrete approach for supervised pattern recognition (2008) Proceedings of the 12th International Workshop on Combinatorial Image Analysis, , Accepted for publication
dc.descriptionBoser, B.E., Guyon, I.M., Vapnik, V.N., A training algorithm for optimal margin classifiers (1992) Proc. 5th Workshop on Computational Learning Theory, pp. 144-152. , New York, NY, USA, ACM Press
dc.descriptionJ.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Torres, and A.X. Falcão, Rotation-invariant texture recognition, in 3rd International Symposium on Visual Computing, Lake Tahoe, Nevada, CA, USA, Nov 2007, Part II, LNCS 4842, pp. 193-204, SpringerVapnik, V.N., An overview of statistical learning theory (1999) Neural Networks, IEEE Transactions on, 10 (5), pp. 988-999
dc.descriptionBazaraa, M.S., Sherali, H.D., Shetti, C.M., (2006) Nonlinear programming theory and algorithms, , Wiley-Interscience
dc.descriptionBurges, C.J.C., A tutorial on support vector machines for pattern recognition (1998) Data Mining and Knowledge Discovery, 2 (2), pp. 121-167
dc.descriptionFalcão, A.X., Stolfi, J., Lotufo, R.A., The image foresting transform: Theory, algorithms, and applications (2004) IEEE Trans. on PAMI, 26 (1), pp. 19-29. , Jan
dc.descriptionCormen, T., Leiserson, C., Rivest, R., (1990) Introduction to Algorithms, , MIT
dc.descriptionAllène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R., Some links between min-cuts, optimal spanning forests and watersheds (2007) Proceedings of the 8th Int. Symposium on Mathematical Morphology, pp. 253-264
dc.descriptionAddison, P.S., (2002), Institute of Physics Publishing Bristol and PhiladelphiaMallat, S.G., A theory for multiresolution signal decomposition: The wavelet representation (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (7), pp. 674-693
dc.descriptionDaubechies, I., The wavelet transform, time-frequency localization and signal analysis (1990) IEEE Transactions on Information Theory, 36 (5), pp. 961-1005
dc.descriptionI. Daubechies, Philadelphia, PA: Soc. Indus. Applied Math., 1992Daubechies, I., Orthonormal bases of compactly supported wavelets ii, variations on a theme (1993) SIAM J. Math. Anal, 24 (2), p. 499519
dc.descriptionSpadotto, A.A., Papa, J.P., Gatto, A.R., Cola, P.C., Pereira, J.C., Guido, R.C., Schelp, A.O., Denoising swallowing sound to improve the evaluators qualitative analysis (2007) Computers and Electrical Engineering, , accepted for publication
dc.descriptionChang, C.C., Lin, C.J., (2001) LIBSVM: A library for support vector machines, , http://www.csie.ntu.edu.tw/~cjlin/libsvm, Software available at url
dc.languageen
dc.publisher
dc.relation2008 3rd International Symposium on Communications, Control, and Signal Processing, ISCCSP 2008
dc.rightsfechado
dc.sourceScopus
dc.titleOropharyngeal Dysphagia Identification Using Wavelets And Optimum Path Forest
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución