dc.creator | Milani B.E.A. | |
dc.creator | Coelho A.D. | |
dc.date | 2002 | |
dc.date | 2015-06-30T16:40:08Z | |
dc.date | 2015-11-26T15:31:20Z | |
dc.date | 2015-06-30T16:40:08Z | |
dc.date | 2015-11-26T15:31:20Z | |
dc.date.accessioned | 2018-03-28T22:39:47Z | |
dc.date.available | 2018-03-28T22:39:47Z | |
dc.identifier | | |
dc.identifier | Controle Y Automacao. , v. 13, n. 1, p. 42 - 50, 2002. | |
dc.identifier | 1031759 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0036308212&partnerID=40&md5=d049b5e9a39aa41c0b721fbb707df68b | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/101456 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/101456 | |
dc.identifier | 2-s2.0-0036308212 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1262202 | |
dc.description | This paper is concerned with piecewise-linear functions as Lyapunov function candidates for stability analysis of time-invariant discrete-time linear systems with saturating closed-loop control inputs. New necessary and sufficient conditions for positive definite piecewise-linear functions be Lyapunov functions are presented. A computational procedure is proposed for determination of such Lyapunov functions and associated polyhedral regions of local asymptotic stability. Compared to Minkowski functions, piecewise-linear functions present strictly better performance, being naturally more flexible and better adapted to the radially variable dynamic behavior of saturated systems. | |
dc.description | 13 | |
dc.description | 1 | |
dc.description | 42 | |
dc.description | 50 | |
dc.description | Bazaraa, M.S., Jarvis, J.J., Sherali, H.D., (1990) Linear Programming and Network Flows, , Wiley, New York NY | |
dc.description | Bitsoris, G., Gravalou, E., Comparison principle, positive invariance and constrained regulation of nonlinear systems (1995) Automatica, 31 (2), pp. 217-222 | |
dc.description | Blanchini, F., Set invariance in control: A survey (1999) Automatica, 35 (11), pp. 1747-1768 | |
dc.description | Dórea, C.E.T., Hennet, J.C., (A,B) - Invariant polyhedral sets of linear discrete-time systems (1999) Journal of Optimization Theory and Applications, 103 (3), pp. 521-542 | |
dc.description | Hennet, J.C., Une extension du lemme de farkas et son application au problème de regulation linéaire sous contraintes (1989) C.R. Acad. Sci. Paris, 308, pp. 415-419. , Série I | |
dc.description | Mangasarian, O.L., (1974) Nonlinear Programming, , SIAM, Philadelphia PA | |
dc.description | Milani, B.E.A., Contractive polyhedra for discrete-time linear systems with saturating controls (1999) Proceedings of the 38th Conference on Decision and Control, , Phoenix AZ, USA | |
dc.description | Milham, C.B., Fast feasibility methods for linear programming (1976) OPSEARCH, 13 (3-4), pp. 198-204 | |
dc.description | Romanchuck, B.G., Computing regions of attractions with polytopes: Planar case (1996) Automatica, 32 (12), pp. 1727-1732 | |
dc.description | Silva J.M.G., Jr., Tarbouriech, S., Polyhedral regions of local asymptotic stability for discrete-time linear systems with saturating controls (1999) IEEE Transactions on Automatic Control, 44 (11), pp. 2081-2085 | |
dc.description | Slotine, J.E., Li, W., (1981) Applied Nonlinear Control, , Prentice-Hall, Englewood Cliffs NJ | |
dc.description | Tarbouriech, S., Silva J.M.G., Jr., Admissible polyhedra for discrete-time linear systems with saturating controls (1997) Proceedings of 1997 American Control Conference, , Albuquerque NM, USA | |
dc.language | pt | |
dc.publisher | | |
dc.relation | Controle y Automacao | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Linear Lyapunov Function For Parts Before Linear Systems With Saturated Controls [funções De Lyapunov Lineares Por Partes Para Sistemas Lineares Com Controles Saturáveis] | |
dc.type | Actas de congresos | |