dc.creatorMilani B.E.A.
dc.creatorCoelho A.D.
dc.date2002
dc.date2015-06-30T16:40:08Z
dc.date2015-11-26T15:31:20Z
dc.date2015-06-30T16:40:08Z
dc.date2015-11-26T15:31:20Z
dc.date.accessioned2018-03-28T22:39:47Z
dc.date.available2018-03-28T22:39:47Z
dc.identifier
dc.identifierControle Y Automacao. , v. 13, n. 1, p. 42 - 50, 2002.
dc.identifier1031759
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0036308212&partnerID=40&md5=d049b5e9a39aa41c0b721fbb707df68b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101456
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101456
dc.identifier2-s2.0-0036308212
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262202
dc.descriptionThis paper is concerned with piecewise-linear functions as Lyapunov function candidates for stability analysis of time-invariant discrete-time linear systems with saturating closed-loop control inputs. New necessary and sufficient conditions for positive definite piecewise-linear functions be Lyapunov functions are presented. A computational procedure is proposed for determination of such Lyapunov functions and associated polyhedral regions of local asymptotic stability. Compared to Minkowski functions, piecewise-linear functions present strictly better performance, being naturally more flexible and better adapted to the radially variable dynamic behavior of saturated systems.
dc.description13
dc.description1
dc.description42
dc.description50
dc.descriptionBazaraa, M.S., Jarvis, J.J., Sherali, H.D., (1990) Linear Programming and Network Flows, , Wiley, New York NY
dc.descriptionBitsoris, G., Gravalou, E., Comparison principle, positive invariance and constrained regulation of nonlinear systems (1995) Automatica, 31 (2), pp. 217-222
dc.descriptionBlanchini, F., Set invariance in control: A survey (1999) Automatica, 35 (11), pp. 1747-1768
dc.descriptionDórea, C.E.T., Hennet, J.C., (A,B) - Invariant polyhedral sets of linear discrete-time systems (1999) Journal of Optimization Theory and Applications, 103 (3), pp. 521-542
dc.descriptionHennet, J.C., Une extension du lemme de farkas et son application au problème de regulation linéaire sous contraintes (1989) C.R. Acad. Sci. Paris, 308, pp. 415-419. , Série I
dc.descriptionMangasarian, O.L., (1974) Nonlinear Programming, , SIAM, Philadelphia PA
dc.descriptionMilani, B.E.A., Contractive polyhedra for discrete-time linear systems with saturating controls (1999) Proceedings of the 38th Conference on Decision and Control, , Phoenix AZ, USA
dc.descriptionMilham, C.B., Fast feasibility methods for linear programming (1976) OPSEARCH, 13 (3-4), pp. 198-204
dc.descriptionRomanchuck, B.G., Computing regions of attractions with polytopes: Planar case (1996) Automatica, 32 (12), pp. 1727-1732
dc.descriptionSilva J.M.G., Jr., Tarbouriech, S., Polyhedral regions of local asymptotic stability for discrete-time linear systems with saturating controls (1999) IEEE Transactions on Automatic Control, 44 (11), pp. 2081-2085
dc.descriptionSlotine, J.E., Li, W., (1981) Applied Nonlinear Control, , Prentice-Hall, Englewood Cliffs NJ
dc.descriptionTarbouriech, S., Silva J.M.G., Jr., Admissible polyhedra for discrete-time linear systems with saturating controls (1997) Proceedings of 1997 American Control Conference, , Albuquerque NM, USA
dc.languagept
dc.publisher
dc.relationControle y Automacao
dc.rightsaberto
dc.sourceScopus
dc.titleLinear Lyapunov Function For Parts Before Linear Systems With Saturated Controls [funções De Lyapunov Lineares Por Partes Para Sistemas Lineares Com Controles Saturáveis]
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución