dc.creatorGuimaraes Pedronette D.C.
dc.creatorAlmeida J.
dc.creatorDa S. Torres R.
dc.date2014
dc.date2015-06-25T17:50:16Z
dc.date2015-11-26T15:31:06Z
dc.date2015-06-25T17:50:16Z
dc.date2015-11-26T15:31:06Z
dc.date.accessioned2018-03-28T22:39:33Z
dc.date.available2018-03-28T22:39:33Z
dc.identifier
dc.identifierInformation Sciences. , v. 265, n. , p. 91 - 104, 2014.
dc.identifier200255
dc.identifier10.1016/j.ins.2013.12.030
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893757544&partnerID=40&md5=e0a3c65b7826c7d8530742e412afb24b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85798
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85798
dc.identifier2-s2.0-84893757544
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262151
dc.descriptionContent-based Image Retrieval (CBIR) systems consider only a pairwise analysis, i.e., they measure the similarity between pairs of images, ignoring the rich information encoded in the relations among several images. However, the user perception usually considers the query specification and responses in a given context. In this scenario, re-ranking methods have been proposed to exploit the contextual information and, hence, improve the effectiveness of CBIR systems. Besides the effectiveness, the usefulness of those systems in real-world applications also depends on the efficiency and scalability of the retrieval process, imposing a great challenge to the re-ranking approaches, once they usually require the computation of distances among all the images of a given collection. In this paper, we present a novel approach for the re-ranking problem. It relies on the similarity of top-k lists produced by efficient indexing structures, instead of using distance information from the entire collection. Extensive experiments were conducted on a large image collection, using several indexing structures. Results from a rigorous experimental protocol show that the proposed method can obtain significant effectiveness gains (up to 12.19% better) and, at the same time, improve considerably the efficiency (up to 73.11% faster). In addition, our technique scales up very well, which makes it suitable for large collections. © 2013 Elsevier Inc. All rights reserved.
dc.description265
dc.description
dc.description91
dc.description104
dc.descriptionAlmeida, J., Leite, N.J., Torres, R.S., Comparison of video sequences with histograms of motion patterns (2011) IEEE Int. Conf. Image Processing (ICIP'11), pp. 3673-3676
dc.descriptionAlmeida, J., Rocha, A., Torres, R.S., Goldenstein, S., Making colors worth more than a thousand words (2008) ACM Int. Symp. Applied Computing (ACM-SAC'08), pp. 1180-1186
dc.descriptionAlmeida, J., Torres, R.S., Leite, N.J., BP-tree: An efficient index for similarity search in high-dimensional metric spaces (2010) ACM Int. Conf. Information and Knowledge Management (CIKM'10), pp. 1365-1368
dc.descriptionAlmeida, J., Valle, E., Torres, R.S., Leite, N.J., DAHC-tree: An effective index for approximate search in high-dimensional metric spaces (2010) J. Inform. Data Manage., 1 (3), pp. 375-390
dc.descriptionBaeza-Yates, R.A., Cunto, W., Manber, U., Wu, S., Proximity matching using fixed-queries trees (1994) Annual Symp. Combinatorial Pattern Matching (CPM'94), Vol. 807 of Lecture Notes in Computer Science, pp. 198-212
dc.descriptionBozkaya, T., Özsoyoglu, Z.M., Indexing large metric spaces for similarity search queries (1999) ACM Trans. Database Syst., 24 (3), pp. 361-404
dc.descriptionBurkhard, W.A., Keller, R.M., Some approaches to best-match file searching (1973) Commun. ACM, 16 (4), pp. 230-236
dc.descriptionChávez, E., Navarro, G., Baeza-Yates, R.A., Marroquín, J.L., Searching in metric spaces (2001) ACM Comput. Surv., 33 (3), pp. 273-321
dc.descriptionCiaccia, P., Patella, M., Zezula, P., M-tree: An efficient access method for similarity search in metric spaces (1997) Int. Conf. Very Large Data Bases (VLDB'97), pp. 426-435
dc.descriptionDatta, R., Joshi, D., Li, J., Wang, J.Z., Image retrieval: Ideas, influences, and trends of the new age (2008) ACM Comput. Surv., 40 (2), pp. 51-560
dc.descriptionElmasri, R.A., Navathe, S.B., (2005) Fundamentals of Database Systems, , Addison-Wesley Longman Publishing Co., Inc
dc.descriptionFagin, R., Kumar, R., Sivakumar, D., Comparing top k lists (2003) ACM-SIAM Symposium on Discrete Algorithms (SODA'03), pp. 28-36
dc.descriptionFerreira, C.D., Dos Santos, J.A., Da Torres S, R., Gonçalves, M.A., Rezende, R.C., Fan, W., Relevance feedback based on genetic programming for image retrieval (2011) Pattern Recogn. Lett., 32 (1), pp. 27-37
dc.descriptionGaede, V., Günther, O., Multidimensional access methods (1998) ACM Comput. Surv., 30 (2), pp. 170-231
dc.descriptionGeusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M., The amsterdam library of object images (2005) Int. J. Comput. Vis., 61 (1), pp. 103-112
dc.descriptionGopalan, R., Turaga, P., Chellappa, R., Articulation-invariant representation of non-planar shapes (2010) 11th European Conference on Computer Vision (ECCV'2010), 3, pp. 286-299
dc.descriptionHuang, J., Kumar, R., Mitra, M., Zhu, W.J., Zabih, R., Image indexing using color correlograms (1997) IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR'97), pp. 762-768
dc.descriptionJagadish, H.V., Mendelzon, A.O., Milo, T., Similarity-based queries (1995) ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems (PODS'95), pp. 36-45
dc.descriptionKontschieder, P., Donoser, M., Bischof, H., Beyond pairwise shape similarity analysis (2009) Asian Conference on Computer Vision, pp. 655-666
dc.descriptionLatecki, L.J., Lakmper, R., Eckhardt, U., Shape descriptors for non-rigid shapes with a single closed contour (2000) IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2000), pp. 424-429
dc.descriptionLing, H., Jacobs, D.W., Shape classification using the inner-distance (2007) IEEE Trans. Pattern Anal. Mach. Intell., 29 (2), pp. 286-299
dc.descriptionLing, H., Yang, X., Latecki, L.J., Balancing deformability and discriminability for shape matching (2010) European Conference on Computer Vision (ECCV'2010), 3, pp. 411-424
dc.descriptionLu, H., Ooi, B., Tan, K., Efficient image retrieval by color contents (1994) Int. Conf. Applications of Databases (ADB'94), Vol. 819 of Lecture Notes in Computer Science, pp. 95-108
dc.descriptionPark, G., Baek, Y., Lee, H.K., Re-ranking algorithm using post-retrieval clustering for content-based image retrieval (2005) Inform. Process. Manage., 41 (2), pp. 177-194
dc.descriptionPass, G., Zabih, R., Miller, J., Comparing images using color coherence vectors (1996) ACM Int. Conf. Multimedia (ACM-MM'96), pp. 65-73
dc.descriptionPedronette, D.C.G., Da S Torres, R., Shape retrieval using contour features and distance optimization (2010) International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP'2010), 1, pp. 197-202
dc.descriptionPedronette, D.C.G., Da Torres S, R., Exploiting clustering approaches for image re-ranking (2011) J. Vis. Lang. Comput., 22 (6), pp. 453-466
dc.descriptionPedronette, D.C.G., Da S Torres, R., Exploiting contextual spaces for image re-ranking and rank aggregation (2011) ACM International Conference on Multimedia Retrieval (ICMR'11), pp. 131-138
dc.descriptionPedronette, D.C.G., Da S Torres, R., Image re-ranking and rank aggregation based on similarity of ranked lists (2011) Computer Analysis of Images and Patterns (CAIP'2011), 6854, pp. 369-376
dc.descriptionPerronnin, F., Liu, Y., Renders, J.M., A family of contextual measures of similarity between distributions with application to image retrieval (2009) IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2009), pp. 2358-2365
dc.descriptionRamakrishnan, R., Gehkre, J., (2003) Database Management Systems, , McGraw-Hill Co., Inc
dc.descriptionVan Rijsbergen, C.J., (1979) Information Retrieval, , Butterworth-Heinemann London
dc.descriptionRocha, A., Almeida, J., Nascimento, M.A., Torres, R., Goldenstein, S., Efficient and flexible cluster-and-search approach for CBIR (2008) Int. Conf. Advanced Concepts for Intelligent Vision Systems (ACIVS'08), Vol. 5259 of Lecture Notes in Computer Science, pp. 77-88
dc.descriptionRui, Y., Huang, T., Ortega, M., Mehrotra, S., Relevance feedback: A power tool for interactive content-based image retrieval (1998) IEEE Trans. Circ. Syst. Video Technol., 8 (5), pp. 644-655
dc.descriptionRui, Y., Huang, T.S., Chang, S.F., Image retrieval: Current techniques, promising directions, and open issues (1999) J. Vis. Commun. Image Representation, 10 (1), pp. 39-62
dc.descriptionDa Torres S, R., Falcão, A.X., Content-based image retrieval: Theory and applications (2006) Rev. Inform. Teórica Apli., 13 (2), pp. 161-185
dc.descriptionDos Santos, J.A., Ferreira, C.D., Da Torres S, R., Gonçalves, M.A., Lamparelli, R.A., A relevance feedback method based on genetic programming for classification of remote sensing images (2011) Inform. Sci., 181 (13), pp. 2671-2684
dc.descriptionSchwander, O., Nielsen, F., Reranking with contextual dissimilarity measures from representational bregmanl k-means (2010) International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP'2010), 1, pp. 118-122
dc.descriptionStehling, R.O., A compact and efficient image retrieval approach based on border/interior pixel classification (2002) ACM Int. Conf. Information and Knowledge Management (CIKM'02), pp. 102-109
dc.descriptionSwain, M.J., Ballard, B.H., Color indexing (1991) Int. J. Comput. Vis., 7 (1), pp. 11-32
dc.descriptionTao, D., Tang, X., Li, X., Wu, X., Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval (2006) IEEE Trans. Pattern Anal. Mach. Intell., 28 (7), pp. 1088-1099
dc.descriptionTian, X., Tao, D., Hua, X.S., Wu, X., Active reranking for web image search (2010) IEEE Trans. Image Process., 19 (3), pp. 805-820
dc.descriptionTraina, Jr.C., Traina, A.J.M., Faloutsos, C., Seeger, B., Fast indexing and visualization of metric data sets using slim-trees (2002) IEEE Trans. Knowl. Data Eng., 14 (2), pp. 244-260
dc.descriptionUhlmann, J.K., Satisfying general proximity/similarity queries with metric trees (1991) Inform. Process. Lett., 40 (4), pp. 175-179
dc.descriptionVieira, M.R., Traina, Jr.C., Chino, F.J.T., Traina, A.J.M., DBM-tree: Trading height-balancing for performance in metric access methods (2006) J. Braz. Comput. Soc., 11 (3), pp. 37-52
dc.descriptionWang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., Tang, N., Learning context-sensitive similarity by shortest path propagation (2011) Pattern Recogn., 44 (1011), pp. 2367-2374
dc.descriptionWebber, W., Moffat, A., Zobel, J., A similarity measure for indefinite rankings (2010) ACM Trans. Inform. Syst., 28 (4), pp. 201-2038
dc.descriptionWu, S., Crestani, F., Methods for ranking information retrieval systems without relevance judgments (2003) ACM Symposium on Applied Computing (SAC'03), pp. 811-816
dc.descriptionYang, X., Bai, X., Latecki, L.J., Tu, Z., Improving shape retrieval by learning graph transduction (2008) European Conference on Computer Vision (ECCV'2008), 4, pp. 788-801
dc.descriptionYang, X., Koknar-Tezel, S., Latecki, L.J., Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval (2009) IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2009), pp. 357-364
dc.descriptionYang, X., Latecki, L.J., Affinity learning on a tensor product graph with applications to shape and image retrieval (2011) IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2011), pp. 2369-2376
dc.descriptionYang, X., Prasad, L., Latecki, L.J., Affinity learning with diffusion on tensor product graph (2013) IEEE Trans. Pattern Anal. Mach. Intell., 35 (1), pp. 28-38
dc.descriptionYang, Y., Nie, F., Xu, D., Luo, J., Zhuang, Y., Pan, Y., A multimedia retrieval framework based on semi-supervised ranking and relevance feedback (2012) IEEE Trans. Pattern Anal. Mach. Intell., 34 (4), pp. 723-742
dc.descriptionYianilos, P.N., Data structures and algorithms for nearest neighbor search in general metric spaces (1993) ACM/SIGACT-SIAM Int. Symp. Discrete Algorithms (SODA'98), pp. 311-321
dc.descriptionZezula, P., Amato, G., Dohnal, V., Batko, M., (2005) Similarity Search: The Metric Space Approach, , Springer-Verlag, Inc
dc.languageen
dc.publisher
dc.relationInformation Sciences
dc.rightsfechado
dc.sourceScopus
dc.titleA Scalable Re-ranking Method For Content-based Image Retrieval
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución