dc.creatorSouza M.
dc.creatorGriggs W.M.
dc.creatorOrdonez-Hurtado R.H.
dc.creatorSajja S.S.K.
dc.creatorLanzon A.
dc.creatorShorten R.N.
dc.date2014
dc.date2015-06-25T17:50:16Z
dc.date2015-11-26T15:30:57Z
dc.date2015-06-25T17:50:16Z
dc.date2015-11-26T15:30:57Z
dc.date.accessioned2018-03-28T22:39:26Z
dc.date.available2018-03-28T22:39:26Z
dc.identifier
dc.identifierEuropean Journal Of Control. European Control Association, v. 20, n. 5, p. 259 - 268, 2014.
dc.identifier9473580
dc.identifier10.1016/j.ejcon.2014.07.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84908206642&partnerID=40&md5=8602b032572df4ea71854799033f2a26
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85797
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85797
dc.identifier2-s2.0-84908206642
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262118
dc.descriptionIn this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These "mixed" systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of "mixedness". First, we analyse the effects of classical discretisation methods on the "mixed" property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of "mixed" discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.
dc.description20
dc.description5
dc.description259
dc.description268
dc.descriptionAnderson, B.D.O., Failures of adaptive control theory and their resolution (2005) Commun. Inf. Syst., 5 (1), pp. 1-20
dc.descriptionAnderson, B.D.O., Moore, J.B., (2007) Optimal Control: Applications and Methods, , Dover Publications, Mineola, NY
dc.descriptionAnderson, B.D.O., Vongpanitlerd, S., (2006) Network Analysis and Synthesis: A Modern Systems Theory Approach, , Dover, Mineola, NY
dc.descriptionA˚ström, K.J., Wittenmark, B., (1997) Computer-Controlled Systems: Theory and Design, 3rd Ed., , Prentice Hall, Upper Saddle River, NJ
dc.descriptionBao, J., Lee, P.L., Wang, F., Zhou, W., New robust stability criterion and robust controller synthesis (1998) Int. J. Robust Nonlinear Control, 8 (1), pp. 49-59
dc.descriptionBorrelli, F., Bemporad, A., Fodor, M., Hrovat, D., An MPC/hybrid system approach to traction control (2006) IEEE Trans. Control Syst. Technol., 14 (3), pp. 541-552
dc.descriptionCosta-Castelló, R., Wang, D., Griñó, R., A passive repetitive controller for discrete-time finite-frequency positive-real systems (2009) IEEE Trans. Autom. Control, 54 (4), pp. 800-804
dc.descriptionCorless, M., Shorten, R., On a class of generalized eigenvalue problems and equivalent eigenvalue problems that arise in systems and control theory (2011) Automatica, 47 (3), pp. 431-442
dc.descriptionChen, T., Francis, B.A., (1995) Optimal Sampled-Data Control Systems, , Springer-Verlag, London, UK
dc.descriptionDesoer, C.A., Vidyasagar, M., (1975) Feedback Systems: Input-Output Properties, , Academic Press, New York and London
dc.descriptionFalcone, P., Tseng, H.E., Borrelli, F., Asgari, J., Hrovat, D., MPC-based yaw and lateral stabilisation via active front steering and braking (2008) Vehicle Syst. Dyn., 46, pp. 611-628
dc.descriptionFantoni, I., Lozano, R., Spong, M.W., Energy based control of the Pendubot (2000) IEEE Trans. Autom. Control, 45 (4), pp. 725-729
dc.descriptionFranklin, G.F., Powell, J.D., Emami-Naeini, A., (2002) Feedback Control of Dynamic Systems, 4th Ed., , Prentice Hall, Upper Saddle River, NJ
dc.descriptionGlad, T., Ljung, L., (2000) Control Theory: Multivariable and Nonlinear Methods, , Taylor & Francis, London and New York
dc.descriptionGolub, G.H., Van Loan, C.F., (1996) Matrix Computations, 3rd Ed., , Johns Hopkins University Press, Baltimore, MD
dc.descriptionGriffiths, P.G., Gillespie, R.B., Freudenberg, J.S., A fundamental linear systems conflict between performance and passivity in haptic rendering (2011) IEEE Trans. Robotics, 27 (1), pp. 75-88
dc.descriptionGriggs, W.M., Anderson, B.D.O., Lanzon, A., A "mixed" small gain and passivity theorem in the frequency domain (2007) Syst. Control Lett., 56 (9-10), pp. 596-602
dc.descriptionGriggs, W.M., Anderson, B.D.O., Lanzon, A., Rotkowitz, M.C., Interconnections of nonlinear systems with "mixed" small gain and passivity properties and associated input-output stability results (2009) Syst. Control Lett., 58 (4), pp. 289-295
dc.descriptionGriggs, W.M., Anderson, B.D.O., Shorten, R.N., A test for determining systems with "mixed" small gain and passivity properties (2011) Syst. Control Lett., 60 (7), pp. 479-485
dc.descriptionGriggs, W.M., Sajja, S.S.K., Anderson, B.D.O., Shorten, R.N., On interconnections of "mixed" systems using classical stability theory (2012) Syst. Control Lett., 61 (5), pp. 676-682
dc.descriptionHespanha, J.P., Naghshtabrizi, P., Xu, Y., A survey of recent results in networked control systems (2007) Proc. IEEE Special Issue Technol. Netw. Control Syst., 95 (1), pp. 138-162
dc.descriptionIwasaki, T., Hara, S., Yamauchi, H., Dynamical system design from a control perspective: Finite frequency positive-realness approach (2003) IEEE Trans. Autom. Control, 48 (8), pp. 1337-1354
dc.descriptionIwasaki, T., Hara, S., Fradkov, A.L., Time domain interpretations of frequency domain inequalities on (semi)finite ranges (2005) Syst. Control Lett., 54 (7), pp. 681-691
dc.descriptionLancaster, P., Tismenetsky, M., (1985) The Theory of Matrices with Applications, , Academic Press, San Diego and London
dc.descriptionMarquez, H.J., (2003) Nonlinear Control Systems: Analysis and Design, , John Wiley & Sons, Hoboken, NJ
dc.descriptionMeyer, C.D., (2000) Matrix Analysis and Applied Linear Algebra, , SIAM, Philadelphia, PA
dc.descriptionNehari, Z., (1975) Conformal Mapping, , Dover Publications, New York, NY
dc.descriptionNoble, B., Daniel, J.W., (1988) Applied Linear Algebra, , Prentice Hall, Englewood Cliffs, NJ
dc.descriptionOishi, Y., Passivity degradation under the discretization with the zero-order hold and the ideal sampler Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, 2010, pp. 7613-7617
dc.descriptionOrtega, R., Spong, M.W., Adaptive motion control of rigid robots: A tutorial Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA, 1988, pp. 1575-1584
dc.descriptionPatra, S., Lanzon, A., Stability analysis of interconnected systems with "mixed" negative-imaginary and small-gain properties (2011) IEEE Trans. Autom. Control, 56 (6), pp. 1395-1400
dc.descriptionPietrus, A., Veliov, V.M., On the discretization of switched linear systems (2009) Syst. Control Lett., 58 (6), pp. 395-399
dc.descriptionPostlethwaite, I., Edmunds, J.M., MacFarlane, A.G.J., Principal gains and principal phases in the analysis of linear multivariable feedback systems (1981) IEEE Trans. Autom. Control, 26 (1), pp. 32-46
dc.descriptionRohrs, C.E., Valavani, L., Athans, M., Stein, G., Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics (1985) IEEE Trans. Autom. Control, 30 (9), pp. 881-889
dc.descriptionSantina, M., Stubberud, A.R., Discrete-time systems (2011) The Control Handbook: Control System Fundamentals, 2nd Ed., , W.S. Levine (Ed.), CRC Press, Boca Raton, FL
dc.descriptionSanfelice, R.G., Teel, A.R., Dynamical properties of hybrid systems simulators (2010) Automatica, 46 (2), pp. 239-248
dc.descriptionSantina, M.S., Stubberud, A.R., Hostetter, G.H., Discrete-time equivalents to continuous-time systems (1996) The Control Handbook, 1st Ed., , W.S. Levine (Ed.), CRC Press, Boca Raton, FL
dc.descriptionSeron, M.M., Braslavsky, J.H., Goodwin, G.C., (1997) Fundamental Limitations in Filtering and Control, , Springer-Verlag, London, UK
dc.descriptionShorten, R.N., Curran, P., Wulff, K., Zeheb, E., A note on spectral conditions for positive realness of transfer function matrices (2008) IEEE Trans. Autom. Control, 53 (5), pp. 1258-1261
dc.descriptionShorten, R., Corless, M., Sajja, S., Solmaz, S., On Padé approximations, quadratic stability and discretization of switched linear systems (2011) Syst. Control Lett., 60 (9), pp. 683-689
dc.descriptionSmith, M.C., Synthesis of mechanical networks: The inerter (2002) IEEE Trans. Autom. Control, 47 (10), pp. 1648-1662
dc.descriptionTeel, A.R., Georgiou, T.T., Praly, L., Sontag, E.D., Input-output stability (2011) The Control Handbook: Control System Advanced Methods, 2nd Ed., , W.S. Levine (Ed.), CRC Press, Boca Raton, FL
dc.descriptionTóth, R., Heuberger, P.S.C., Van Den Hof, P.M.J., Discretisation of linear parameter-varying state-space representations (2010) IET Control Theory Appl., 4 (10), pp. 2082-2096
dc.descriptionTóth, R., Lovera, M., Heuberger, P.S.C., Corno, M., Van Den Hof, P.M.J., On the discretisation of linear fractional representations of LPV systems (2012) IEEE Trans. Control Syst. Technol., 20 (6), pp. 1473-1489
dc.descriptionWen, J.T., Arcak, M., A unifying passivity framework for network flow control (2004) IEEE Trans. Autom. Control, 49 (2), pp. 162-174
dc.descriptionXie, L., Fu, M., Li, H., Passivity analysis and passification for uncertain signal processing systems (1998) IEEE Trans. Signal Process., 46 (9), pp. 2394-2403
dc.descriptionXiong, J., Petersen, I.R., Lanzon, A., Finite frequency negative imaginary systems (2012) IEEE Trans. Autom. Control, 57 (11), pp. 2917-2922
dc.descriptionZappavigna, A., Colaneri, P., Kirkland, S., Shorten, R., Essentially negative news about positive systems (2012) Linear Algebra Appl., 436 (9), pp. 3425-3442
dc.descriptionZhou, K., Doyle, J.C., Glover, K., (1996) Robust and Optimal Control, , Prentice Hall, Upper Saddle River, NJ
dc.languageen
dc.publisherEuropean Control Association
dc.relationEuropean Journal of Control
dc.rightsfechado
dc.sourceScopus
dc.titleCharacterising Discrete-time Linear Systems With The "mixed" Positive Real And Bounded Real Property
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución