dc.creatorMarin D.M.
dc.creatorDe Barros-Mazon S.
dc.creatorAlegre S.M.
dc.date2010
dc.date2015-06-26T12:41:54Z
dc.date2015-11-26T15:30:29Z
dc.date2015-06-26T12:41:54Z
dc.date2015-11-26T15:30:29Z
dc.date.accessioned2018-03-28T22:38:57Z
dc.date.available2018-03-28T22:38:57Z
dc.identifier9781608768295
dc.identifierInsulin Resistance: Symptoms, Causes And Treatment. Nova Science Publishers, Inc., v. , n. , p. 105 - 128, 2010.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84895313115&partnerID=40&md5=1bdd68487923126dfee628493bedbb4a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91495
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91495
dc.identifier2-s2.0-84895313115
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261999
dc.descriptionInsulin secretion is regulated mainly by glucose stimulus changes and is characterized by first and second phase (biphasic time course). β-cell glucose sensitivity is essential to maintain glucose homeostasis and loss of that capacity has been related to progression from normal glucose tolerance to impaired glucose tolerance and diabetes mellitus. β-cell glucose sensitivity can be evaluated through a slope of dose-response curve which shows the ability to increase insulin release with the appropriate amount and time course to cope with acute changes in plasma glucose concentration. Some factors can modulate insulin secretion. One of them is glucose toxicity, the direct impairment of chronic hyperglycemia on β-cell function characterized as impairment in insulin response to glucose but not to other nonglucose secretagogues. A glucose-induced insulin secretion is completely restored if normoglycemia is achieved. Lipotoxicity is also related to lower glucose induced insulin secretion through different mechanisms. On the other hand, it is suggested that the incretin GLP-1 stimulates insulin secretion through increasing β-cell glucose sensitivity, inhibiting potassium channels and exacerbating the voltage-dependent calcium channels. Normoglycemia in states of insulin resistance is maintained by a compensatory increase in insulin secretion. Adipokines such as pro-inflammatory cytokines are related to insulin resistance in obesity and type 2 diabetes. The mechanisms underlying regulated-insulin secretion by adipokines and insulin resistance are very complex and not completely understood. In fact a real molecular and cellular inflammatory network takes place acting per se linking up lipotoxicity, glucotoxicity and insulin secretion. Adiponectin and weight loss, on the other hand, are related to the decrease in the pro-inflammatory state and improved insulin action and secretion. So the focus of this review is to address the mechanisms underlying reciprocal relationships between insulin secretion, insulin resistance and inflammation in the pathological state and in its subsequent improvement. © 2010 by Nova Science Publishers, Inc. All rights reserved.
dc.description
dc.description
dc.description105
dc.description128
dc.descriptionCaumo, A., Luzi, L., First-phase insulin secretion: does it exist in real life? Considerations on shape and function (2004) Am J Physiol Endocrinol Metab, 287, pp. E371-E385
dc.descriptionBrunzell, J.D., Robertson, R.P., Lerner, R.L., Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests (1976) J Clin Endocrinol Metab, 42, pp. 222-229
dc.descriptionJones, C.N.O., Abbasi, F., Carantoni, M., Roles of insulin resistance and obesity in regulation of plasma insulin concentrations (2000) Am J Physiol, 278, pp. E501-508
dc.descriptionWeyer, C., Bogardus, C., Mott, D.M., Pratley, R.E., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus (1999) J Clin Invest, 104, pp. 787-794
dc.descriptionAbdul-Ghani, M.A., Tripathy, D., De Fronzo, R.A., Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose (2006) Diabetes Care, 29, pp. 1130-1139
dc.descriptionUK prospective diabetes study 7: Response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients (1990), 39 (9), pp. 905-912. , UKPDS Group. MetabolismSjöström, C.D., Lissner, L., Wedel, H., Sjöström, L., Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study (1999) Obes Res., 7, pp. 477-484
dc.descriptionDiabetes Prevention Program Research Group (2002) N Engl J Med., 346, pp. 393-403. , Reduction in the Incidence of Type2 Diabetes with Lifestyle Intervention or Metformin
dc.descriptionMuscelli, E., Mingrone, G., Camastra, S., Manco, M., Pereira, J.A., Pareja, J.C., Ferrannini, E., Differential effect of weight loss on insulin resistance in surgically treated obese patients (2005) Am J Med, 118 (1), pp. 51-57
dc.descriptionCerasi, E., Luft, R., Efendic, S., Decreased sensitivity of the pancreatic beta cells to glucose in prediabetic and diabetic subjects. A glucose dose-response study (1972) Diabetes, 21, pp. 224-234
dc.descriptionMalaisse, W.J., Sener, A., Herchuelz, A., Hutton, J.C., Insulin release: the fuel hypothesis (1979) Metabolism, 28, p. 373
dc.descriptionLevin, S.R., Karam, J.H., Hane, S., Enhancement of arginine-induced insulin secretion in man by prior administration of glucose (1971) Diabetes, 20, pp. 171-176
dc.descriptionCalles-Escandon, J., Robbins, D.C., Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose (1987) Diabetes, 36, pp. 1167-1172
dc.descriptionCerasi, E., Luft, R., The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus (1967) Acta Endocrinol, 55, pp. 278-304
dc.descriptionLefebre, P.J., Paolisso, G., Scheen, A.J., Henquin, J.C., Pulsatility of insulin and glucagon release: physiological significance and pharmacological implications (1987) Diabetologia, 30, pp. 443-452
dc.descriptionPorksen, N., The in vivo regulation of pulsatile insulin secretion (2002) Diabetologia, 45, pp. 3-20
dc.descriptionSteiner, K.E., Mouton, S.M., Williams, P.E., Lacy, W.W., Cherrington, A.D., Relative importance of first and second-phase insulin secretion on glucose homeostasis in conscious dog (1986) Diabetes, 35, pp. 776-784
dc.descriptionUnger, R.H., Glucagon physiology and pathophysiology in the light of new advances (1985) Diabetologia, 28, pp. 574-578
dc.descriptionNauck, M.A., Homberger, E., Eberhard, G.S., Allen, R.C., Eaton, R.P., Ebert, R., Creutzfeldt, W., Incretin effects oj increasing glucose loads in man calculated from venous insulin and c-peptide responses (1986) J Clin Endocrinol Metab, 63, pp. 492-498
dc.descriptionKjems, L.L., Holst, J.J., Vølund, A., Madsbad, S., The influence of GLP-1 on glucose-stimulated insulin secretion. Effects on β-cell sensitivity in type 2 and nondiabetic subjects (2003) Diabetes, 52, pp. 380-386
dc.descriptionGromada, J., Ding, W.G., Barg, S., Renstrom, E., Rorsman, P., Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors (1997) Pflugers Arch, 434, pp. 515-521
dc.descriptionGromada, J., Bokvist, K., Ding, W.G., Holst, J.J., Nielsen, J.H., Rorsman, P., Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic β-cells by both proximal and distal regulatory steps in stimulus-secretion coupling (1998) Diabetes, 47, pp. 57-65
dc.descriptionDrucker, D.J., The role of gut hormones in glucose homeostasis (2007) J Clin Invesy, 117, pp. 24-32
dc.descriptionDrucker, D.J., The biology of incretin hormones (2006) Cell Metab, 3, pp. 153-165
dc.descriptionHolz, G.G., Habener, J.F., Signal transduction cross-talk in the endocrine system: pancreatic beta-cells and the glucose competence concept (1992) Trends Biochem Sci, 17, pp. 388-393
dc.descriptionDrucker, D.J., Biological actions and therapeutic potential of th glucagon-like peptide (2002) Gastroenterology, 122, pp. 531-544
dc.descriptionBrubaker, P.L., Drucker, D.J., Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1 and GLP-2 receptors (2002) Receptors Channels, 8, pp. 179-188
dc.descriptionGerich, J.E., Oral hypoglycemic agents (1989) N Engl J Med, 321, pp. 1231-1245
dc.descriptionDrucker, D.J., Enhancing incretin action for the treatment of type 2 diabetes (2003) Diabetes Care, 26, pp. 2928-2940
dc.descriptionPerfetti, R., Merkel, P., Glucagon-like peptide-1: a major regulator of pancreatic-cell function (2000) Eur J Endocrinol, 143, pp. 717-725
dc.descriptionCherrington, A.D., Edgerton, D., Sindelat, D.K., The direct and indirect effects of insulin on hepatic glucose production in vivo (1998) Diabetologia, 41, pp. 987-996
dc.descriptionSteiner, K.E., Mouton, S.M., Bowles, C.R., Williams, P.E., Cherrington, A.D., The relative importance of first and second-phase insulin secretion in countering the action of glucagon on glucose turnover in the conscious dog (1982) Diabetes, 31, pp. 964-972
dc.descriptionToffolo, G., De Grandi, F., Cobelli, C., Estimation of beta-cell sensitivity from intravenous glucose tolerance test C-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion (1995) Diabetes, 44, pp. 845-854
dc.descriptionKahn, S.E., Prigeon, R.L., McCulloch, D.K., Boyko, E.J., Bergman, R.N., Schwartz, M.W., Neifing, J.L., Palmer, J.P., Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects: evidence for a hyperbolic function (1993) Diabetes, 42, pp. 1663-1672
dc.descriptionMari, A., Schmitz, O., Gastaldelli, A., Oestergaard, T., Nyholm, B., Ferrannini, E., Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects (2002) Am J Physiol Endocrinol Metab, 283, pp. E 1159-E 1166
dc.descriptionAhrén, B., Pacini, G., Importance of quantifying insulinsecretion in relation to insulin sensitivity to accurately assess beta-cell function in clinical studies (2004) Eur J Endocrinol, 150, pp. 97-104
dc.descriptionStumvoll, M., Tataranni, A., Stefan, N., Vozarova, B., Bogardus, C., Glucose allostasis (2003) Diabetes, 52, pp. 903-909
dc.descriptionBergman, R.N., Ader, M., Huecking, K., Van Citters, G., Accurate assessment of beta-cell function: the hyperbolic correction (2002) Diabetes, 51 (SUPPL. 1), pp. s212-s220
dc.descriptionMari, A., Ahrén, B., Pacini, G., Assessment of insulin secretion in relation to insulin resistance (2005) Curr Opin in Clin Nutr and Metab Care, 8, pp. 529-533
dc.descriptionUnwin, N., Shaw, J., Zimmet, P., Alberti, K.G.M.N., Impaired glucose tolerance and impaired fasting glicemia: the current satatus on definition and intervention (2002) Diabet Med, 19, pp. 708-723
dc.descriptionBuchanan, T.A., Xiang, A.H., Peters, R.K., Kjos, S.L., Marroquin, A., Goico, J., Ochoa, C., Azen, S.P., Preservation of pancreatic B cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women (2002) Diabetes, 51, pp. 2796-2803
dc.descriptionFerrannini, E., Camastra, S., Gastaldelli, A., Sironi, A.M., Natali, A., Muscelli, E., Mingrone, G., Mari, A., Beta-Cell function in obesity. Effects of weight loss (2004) Diabetes, 53 (SUPPL. 3), pp. s26-s33
dc.descriptionKitabchi, A.E., Temprosa, M., Knowler, W.C., Kahn, S.E., Fowler, S.E., Haffner, S.M., Andres, R., Shamoon, H., The Diabetes Prevention Program Research Group. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin (2005) Diabetes, 54, pp. 2404-2414
dc.descriptionAhrén, B., Pacini, G., Impaired adaptation of first-phase insulin secretion in post-menopausal women with glucose intolerance (1997) Am J Physiol, 36, pp. E701-E707
dc.descriptionGastaldelli, A., Ferrannini, E., Miyazaki, Y., Matsuda, M., De Fronzo, R.A., San Antonio Metabolism study: beta-cell dysfunction and glucose intolerance: results from the San Antonio Metabolism (SAM) study (2004) Diabetologia, 47, pp. 31-39
dc.descriptionFerrannini, E., Gastaldelli, A., Miyazaki, Y., Matsuda, M., Mari, A., De Fronzo, R.A., β-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis (2005) J Clin Endocrinol Metab, 90 (1), pp. 493-500
dc.descriptionEfendic, S., Cerasi, E., Luft, R., Quantitative study on the potentiating effect of arginine on glucose-induced insulin response in health, prediabetic, and diabetic subjects (1974) Diabetes, 23, pp. 161-171
dc.descriptionNovoa, F.J., Boronat, M., Saavedra, P., Diaz-Cremades, J.M., Varillas, V.F., La Roche, F., Alberiche, M.P., Carrillo, A., Differences in cardiovascular risk factors, insulin resistance, and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation: the Telde Study (2005) Diabetes Care, 28, pp. 2388-2393
dc.descriptionPfeifer, M.A., Halter, J.B., Porte Jr, D.., Insulinsecretion in diabetes mellitus (1981) Am J Med, 70, pp. 579-588
dc.descriptionWard, W.K., Bolgiano, D.C., McKnight, B., Diminished-cell secretory capacity in patients with non-insulin dependent diabetes mellitus (1984) J Clin Invest, 74, pp. 1318-1328
dc.descriptionByrne, M.M., Sturis, J., Sobel, R.J., Elevated plasma glucose 2h posthallenge predicts defects in β-cell function (1996) Am J Physiol, 270, pp. E572-E579
dc.descriptionBergman, R.N., Phillips, L.S., Cobelli, C., Physiological evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta cell glucose sensitivity from the response to intravenous glucose (1981) J Clin Invest, 68, pp. 1456-1467
dc.descriptionHavel, J.P., Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein and adiponectin (2002) Curr Opin Lipidol, 13, pp. 51-59
dc.descriptionRajala, M.W., Scherer, P.E., Minireview: the adipocyte: at the crossroads of energy homeostasis, inflamation and atherosclerosis (2003) Endocrinology, 144, pp. 3765-3773
dc.descriptionFerrannini, E., Barrett, E.J., Bevilacqua, S., DeFronzo, R.A., Effect of free fatty acids on glucose production and utilization in man (1983) J Clin Invest, 72, pp. 1737-1745
dc.descriptionNolan, C.J., Madiraju, M.S.R., Delghingaro-Augusto, V., Peyot, M.L., Prentki, M., Fatty Acid Signaling in the ß Cell and Insulin Secretion (2006) Diabetes, 55 (SUPPL. 2), pp. S16-S23
dc.descriptionZhou, Y.P., Grill, V.E., Palmitate-induced beta-cell insensitivity to glucose is coupled to decreased pyruvate dehydrogenase activity and enhanced kinase activity in rat pancreatic islets (1995) Diabetes, 44, pp. 394-399
dc.descriptionKashyap, S., Belfort, R., Gastaldelli, A., Pratipanawatr, T., Bervia, R., Pratipanawart, N., Bajaj, M., Cusi, K., A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes (2003) Diabetes, 52, pp. 2461-2474
dc.descriptionRoden, M., Price, T.B., Perseghin, G., Mechanism of free fatty acid induced insulin resistance in humans (1996) J Clin Invest, 97, pp. 2859-2865
dc.descriptionRoden, M., Krssak, M., Stingl et, al., Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans (1999) Diabetes, 48, pp. 385-364
dc.descriptionDresner, A., Laurent, D., Marcucci, M., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol3-kinase activity (1999) J Clin Invest, 103, pp. 253-259
dc.descriptionKrebs, M., Krssab, M., Nonotny, P., Free fatty acids inhibit the glucose-stimulate increase of intramuscular glucose-6-phosphate concentration in humans (2001) J Clin Endocrinol Metab, 86, pp. 2153-2160
dc.descriptionSchulman, G.I., Cellular mechanisms of insulin resistance (2000) J Clin Invest, 106, pp. 171-176
dc.descriptionRandle, P.J., Hales, C.N., Garland, P.B., Newsholme, E.A., The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus (1963) Lancet, 1, pp. 758-789
dc.descriptionGarvey, W.T., Birnbaum, M., Cellular insulin action and insulin resistance (1993) Clin Endocrinol Metab, 7 (4), pp. 785-873. , Ed: Ferrannini E
dc.descriptionYu, C., Chen, Y., Cline, G.W., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 [IRS-1] associated phosphatidylinositol 3-kinase activity in muscle (2002) J Biol Chem, 277, pp. 50230-50236
dc.descriptionEllis, B.A., Poynten, A., Lowy, A.J., Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle (2000) Am J Physiol, 279, pp. E554-E560
dc.descriptionDresner, A., Laurent, D., Marcucci, M., Griffin, M.E., Dufour, S., Cline, G.W., Slezak, L.A., Shulman, G.I., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity (1999) The Journal Clin Invest, 103, pp. 253-259
dc.descriptionWhite, M.F., Insulin signaling in health and disease (2003) Science, 302 (5651), pp. 1710-1711
dc.descriptionNguyen, M.T., Satoh, H., Favelyukis, S., Babendure, J.L., Imamura, T., Sbodio, J.I., Zalevsky, J., Olefsky, J.M., JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes (2005) J Biol Chem, 280, pp. 35361-35371
dc.descriptionGremlich, S., Bonny, C., Waeber, G., Thorens, B., Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels (1997) J Biol Chem, 272, pp. 30261-30269
dc.descriptionRobertson, R.P., Harmon, J., Tran, P.O., Poitout, V., β-Cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes (2004) Diabetes, 53 (SUPPL. 1), pp. S119-S124
dc.descriptionLeahy, J.L., Cooper, H.E., Deal, D.A., Weir, G.C., Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion: a study in normal rats using chronic in vivo glucose infusions (1986) J. Clin. Invest, 77, pp. 908-991
dc.descriptionMonnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J.P., Colette, C., Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes (2006) JAMA, 295, pp. 1681-1687
dc.descriptionMaedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H.I., Spinas, G.A., Kaiser, N., Donath, M.Y., Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets (2002) J Clin Invest, 110, pp. 851-860
dc.descriptionRobertson, R.P., Zhang, H.J., Pyzdrowski, K.L., Walseth, T.F., Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations (1992) J. Clin. Invest, 90, pp. 320-325
dc.descriptionDubois, M., Vacher, P., Roger, B., Huyghe, D., Vandewalle, B., Kerr-Conte, J., Pattou, F., Lang, J., Glucotoxicity Inhibits Late Steps of Insulin Exocytosis (2007) Endocrinology, 148, pp. 1605-1614
dc.descriptionTajiri, Y., Moller, C., Grill, V., Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits B cell function (1997) Endocrinology, 138, pp. 273-280
dc.descriptionSpinas, G.A., Palmer, J.P., Mandrup-Poulsen, T., Andersen, H., Nielsen, J.H., Nerup, J., The bimodal effect of interleukin 1 on rat pancreatic β-cells-stimulation followed by inhibition-depends upon dose, duration of exposure, and ambient glucose concentration (1988) Acta Endocrinol (Copenh), 119, pp. 307-311
dc.descriptionBöni-Schnetzler, M., Thorne, J., Parnaud, G., Marselli, L., Ehses, J.A., Kerr-Conte, J., Pattou, F., Donath, M.Y., Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation (2008) J Clin Endocrinol Metab, 93 (10), pp. 4065-4074
dc.descriptionMaedler, K., Schulthess, F.T., Bielman, C., Berney, T., Bonny, C., Prentki, M., Donath, M.Y., Roduit, R., Glucose and leptin induce apoptosis in human β-cells and impair glucose-stimulated insulin secretion through activation of c-Jun N-terminal kinases (2008) The FASEB Journal, 22, p. 1905
dc.descriptionWeyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R.E., Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia (2001) J Clin Endocrinol Metab, 86 (5), pp. 1930-1935
dc.descriptionCombs, T.P., Berg, A.H., Obici, S., Scherer, P.E., Rossetti, L., Endogenous glucose production is inhibited by the adipose-derived protein Acrp30 (2001) The Journal of Clinical Investigation, 108 (12), pp. 1875-1881
dc.descriptionFruebis, J., Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice (2001) Proc Natl Acad Sci, 98, pp. 2005-2010
dc.descriptionAbbasi, F., Chu, J.W., Lamendola, C., McLaughlin, T., Hayden, J., Reaven, G.M., Reaven, P.D., Discrimination between obesity and insulin resistance in the relationship with adiponectin (2004) Diabetes, 53, pp. 585-590
dc.descriptionKharroubi, I., Rasschaert, J., Eizirik, D.L., Cnop, M., Expression of adiponectin receptors in pancreatic b cells (2003) Biochemical and Biophysical Research Communications, 312, pp. 1118-1122
dc.descriptionRakatzi, I., Mueller, H., Ritzeler, O., Tennagels, N., Eckel, J., Adiponectin counteracts cytokine-and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1 (2004) Diabetologia, 47, pp. 249-258
dc.descriptionStaiger, K., Stefan, N., Staiger, H., Brendel, H.D., Brandhorst, D., Bretzel, R.G., Machicao, F., Häring, H.U., Adiponectin Is Functionally Active in Human Islets but Does Not Affect Insulin Secretory Function or β-Cell Lipoapoptosis (2005) J Clin Endocrinol Metab, 90, pp. 6707-6713
dc.descriptionKern, P.A., Ranganathan, S., Li, C., Wood, L., Ranganathan, G., Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance (2001) Am J Physiol Endocrinol Metab, 280 (5), pp. E745-51
dc.descriptionLiu, L.S., Spelleken, M., Rohrig, K., Hauner, H., Eckel, J., Tumor Necrosis factor alpha acutely inhibits insulin signalling in human adipocytes: implications of the p80 tumor necrosis factor receptor (1998) Diabetes, 47 (4), pp. 515-522
dc.descriptionHotamisligil, G.S., Spiegelman, B.M., Tumor necrosis factor alpha: a key component of the obesity-diabetes link (1994) Diabetes, 43 (11), pp. 1271-1278
dc.descriptionKanety, H., Feinstein, R., Papa, M.Z., Hemi, R., Karasik, A., Tumor necrosis factor alpha induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1 (1995) The Journal of Biological Chemistry, 270 (40), pp. 23780-23784
dc.descriptionHauner, H., Petruschke, T., Russ, M., Rohrig, K., Eckel, J., Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture (1995) Diabetologia, 38, pp. 764-771
dc.descriptionZhang, H.H., Halbleib, M., Ahmad, F., Manganiello, V.C., Greenberg, A.S., Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP (2002) Diabetes, 51, pp. 2929-2935
dc.descriptionMaeda, N., Shimomura, I., Kishida, K., Diet-induced insulin resistance in mice lacking adiponectin/ACRP30 (2002) Nat Med, 8, pp. 731-737
dc.descriptionWang, B., Jenkins, J.R., Trayhurn, P., Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha (2005) Am J Physiol Endocrinol Metab, 288, pp. E731-E740
dc.descriptionPradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E., Ridker, P.M., C-reactive protein, interleukin 6, and risk of developing type 2 Diabetes Mellitus (2001) JAMA, 286 (3), pp. 327-334
dc.descriptionMohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D.R., Miles, J.M., Yudkin, J.S., Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha in vivo (1997) J Clin Endocrinol Metab, 82 (12), pp. 4196-4200
dc.descriptionOrtiz, J.N.M., Monte Alegre, S., Marin, D.M., Souza, A.L., Pareja, J.C., Muscelli, E., The effect of insulin on serum adiponectin, IL-6, TNF-α and CRP in severely obese subjects with normal or impaired glucose tolerance-unpublished data Dixon, J.B., O'Brien, P.E., Lipid profile in the severely obese: changes with weight loss after lap-band surgery (2002) Obesity Research, 10 (9), pp. 903-910
dc.descriptionPereira, J.A., Claro, B.M., Pareja, J.C., Chaim, E.A., Astiarraga, B.D., Saad, M.J., Muscelli, E., Restored insulin inhibition on insulin secretion in nondiabetic severely obese patients after weight loss induced by bariatric surgery (2003) International Journal of Obesity, 27, pp. 463-468
dc.descriptionPereira, J.A., Lararin, M.A.C.T., Pareja, J.C., Souza, A.L., Mescelli, E., Insulin resistance in nondiabetic morbidly obese patients: effect of bariatric surgery (2003) Obesity Research, 11, pp. 1495-1501
dc.descriptionKorner, J., Bessler, M., Cirilo, L.J., Conwell, I.M., Daud, A., Restuccia, N.L., Wardlaw, S.L., Effects of Roux-en-Y Gastric Bypass Surgery on Fasting and Postprandial Concentrations of Plasma Ghrelin, Peptide YY, and Insulin (2005) The Journal of Clinical Endocrinology & Metabolism, 90 (1), pp. 359-365
dc.descriptionShah, M., Simha, V., Garg, A., Long-term impact of bariatric surgery on body weight, comorbidities and nutritional status (2006) Journal of Clin Endocrinol & Metab, 91 (11), pp. 4223-4231
dc.descriptionPories, W.J., Macdonald, K.G., Morgan, E.J., Surgical treatment of obesity and its effects on diabetes: 10-y follow-up (1992) Am J Clin Nutr, 55, pp. 582S-585S
dc.descriptionBuchwald, H., Avidor, Y., Brawnwald, E., Bariatric surgery: a systemic review and meta-analysis (2004) JAMA, 2992, pp. 1724-1737
dc.descriptionGuldstrand, M., Ahrén, B., Adamson, A.U., Improved β-cell function after standardized weight reduction in severely obese subjects (2003) Am J Physiol Endocrinol Metab, 284, pp. E557-E565
dc.descriptionMarin, D.M., Monte Alegre, S., Ortiz, J.N.M., Pareja, J.C., Chaim, E.A., Silva, C.A., Astiarraga, B.D., Muscelli, E., Insulin secretion and β-cell glucose sensitivity in Severe Obesity: Effect of Weight Loss after Gastric bypass-unpublished data Mari, A., Manco, M., Guidone, C., Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function (2006) Diabetologia, 49 (9), pp. 2136-2143
dc.descriptionGuidone, C., Manco, M., Valera-Mora, E., Mechanisms of recovery from type 2 diabetes after malabsorptive batiatric surgery (2006) Diabetes, 55, pp. 2025-2031
dc.descriptionPatriti, A., Facchiano, E., Sanna, A., Gulla, N., Donini, A., The enteroinsular axis and the recovery from type2 diabetes after bariatric surgery (2004) Obes Surg, 14, pp. 840-848
dc.descriptionAhren, B., Holst, J.J., Mari, A., Characterization of GLP-1 effects on-cell function after meal ingestion in humans (2003) Diabetes Care, 26, pp. 2860-2864
dc.descriptionNauck, A., Heinesaat, M.M., Orkor, C., Preserved incretin activity of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes (1993) J Clin Invest, 91, pp. 301-307
dc.descriptionBlandine, L., Stanley, H., Krystle, W., Incretin levels and effect are markedly enhanced 1 month after Roux-in-Y gastric bypass surgery in obese patients with type 2 diabetes (2007) Diabetes Care, 30, pp. 1709-1716
dc.descriptionCarvalho, C.P., Marin, D.M., Souza, A.L., Pareja, J.C., Chaim, E.A., de Barros-Mazon, S., Silva, C.A., Monte Alegre, S., GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism (2009) Obes Surg, 19 (3), pp. 313-320
dc.descriptionDonath, M.Y., Størling, J., Berchtold, L.A., Billestrup, N., Mandrup-Poulsen, T., Cytokines and beta-cell biology: from concept to clinical translation (2008) Endocr Rev, 29 (3), pp. 334-350
dc.descriptionLarsen, C.M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J.A., Seifert, B., Mandrup-Poulsen, T., Donath, M.Y., Interleukin-1-receptor antagonist in type 2 diabetes mellitus (2007) N Engl J Med, 356, pp. 1517-1526
dc.descriptionLarsen, C.M., Faulenbach, M., Vaag, A., Ehses, J.A., Donath, M.Y., Mandrup-Poulsen, T., Sustained Effects of Interleukin-1-Receptor Antagonist Treatment in Type 2 Diabetes Mellitus (2009) Diabetes Care, , [Epub ahead of print]
dc.descriptionMaedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H.I., Spinas, G.A., Kaiser, N., Donath, M.Y., Glucose-induced beta-cell production of interleukin-1 contributes to glucotoxicity in human pancreatic islets (2002) J. Clin.Invest, 110, pp. 851-860
dc.descriptionWeyer, C., Bogardus, C., Mott, D.M., Pratley, R.E., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus (1999) J Clin Invest, 104, pp. 787-794
dc.descriptionKitabchi, A.E., Temprosa, M., Knowler, W.C., Kahn, S.E., Fowler, S.E., Haffner, S.M., Andres, R., Shamoon, H., The Diabetes Prevention Program Research Group. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program:effects of lifestyle intervention and metformin (2005) Diabetes, 54, pp. 2404-2414
dc.languageen
dc.publisherNova Science Publishers, Inc.
dc.relationInsulin Resistance: Symptoms, Causes and Treatment
dc.rightsfechado
dc.sourceScopus
dc.titleInsulin Secretion In Insulin Resistance States
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución