dc.creatorFerreira M.C.
dc.creatorWhibley N.
dc.creatorMamo A.J.
dc.creatorSiebenlist U.
dc.creatorChan Y.R.
dc.creatorGaffen S.L.
dc.date2014
dc.date2015-06-25T17:50:12Z
dc.date2015-11-26T15:30:28Z
dc.date2015-06-25T17:50:12Z
dc.date2015-11-26T15:30:28Z
dc.date.accessioned2018-03-28T22:38:56Z
dc.date.available2018-03-28T22:38:56Z
dc.identifier
dc.identifierInfection And Immunity. , v. 82, n. 3, p. 1030 - 1035, 2014.
dc.identifier199567
dc.identifier10.1128/IAI.01389-13
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84894285479&partnerID=40&md5=a496a6439a375ec38b800b529388dd2b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85787
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85787
dc.identifier2-s2.0-84894285479
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261996
dc.descriptionOropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17- mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2-/- mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA-/- or Act1-/- mice). However, Lcn2-/- mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis. © 2014, American Society for Microbiology.
dc.description82
dc.description3
dc.description1030
dc.description1035
dc.descriptionFidel Jr., P.L., Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis (2011) Adv. Dent. Res., 23, pp. 45-49. , http://dx.doi.org/10.1177/0022034511399284
dc.descriptionGlocker, E., Grimbacher, B., Chronic mucocutaneous candidiasis and congenital susceptibility to Candida (2010) Curr. Opin. Allergy Clin. Immunol., 10, pp. 542-550. , http://dx.doi.org/10.1097/ACI.0b013e32833fd74f
dc.descriptionHuppler, A.R., Bishu, S., Gaffen, S.L., Mucocutaneous candidiasis: the IL-17 pathway and implications for targeted immunotherapy (2012) Arthritis Res. Ther., 14, p. 217. , http://dx.doi.org/10.1186/ar3893
dc.descriptionBrown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., White, T.C., Hidden killers: human fungal infections (2012) Sci. Transl. Med., 4, pp. 165rv13. , http://dx.doi.org/10.1126/scitranslmed.3004404
dc.descriptionCassone, A., Development of vaccines for Candida albicans: fighting a skilled transformer (2013) Nat. Rev. Microbiol., 11, pp. 884-891. , http://dx.doi.org/10.1038/nrmicro3156
dc.descriptionMilner, J., Holland, S., The cup runneth over: lessons from the everexpanding pool of primary immunodeficiency diseases (2013) Nat. Rev. Immunol., 13, pp. 635-648. , http://dx.doi.org/10.1038/nri3493
dc.descriptionConti, H.R., Shen, F., Nayyar, N., Stocum, E., Sun, J.N., Lindemann, M.J., Ho, A.W., Gaffen, S.L., Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis (2009) J. Exp. Med., 206, pp. 299-311. , http://dx.doi.org/10.1084/jem.20081463
dc.descriptionHo, A.W., Shen, F., Conti, H.R., Patel, N., Childs, E.E., Peterson, A.C., Hernandez-Santos, N., Gaffen, S.L., IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail (2010) J. Immunol., 185, pp. 1063-1070. , http://dx.doi.org/10.4049/jimmunol.0903739
dc.descriptionFarah, C.S., Hu, Y., Riminton, S., Ashman, R.B., Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene targeting (2006) Oral Microbiol. Immunol., 21, pp. 252-255. , http://dx.doi.org/10.1111/j.1399-302X.2006.00288.x
dc.descriptionPuel, A., Cypowji, S., Bustamante, J., Wright, J., Liu, L., Lim, H., Migaud, M., Casanova, J.-L., Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity (2011) Science, 332, pp. 65-68. , http://dx.doi.org/10.1126/science.1200439
dc.descriptionPuel, A., Doffinger, R., Natividad, A., Chrabieh, M., Barcenas-Morales, G., Picard, C., Cobat, A., Casanova, J.L., Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I (2010) J. Exp. Med., 207, pp. 291-297. , http://dx.doi.org/10.1084/jem.20091983
dc.descriptionKisand, K., Boe Wolff, A.S., Podkrajsek, K.T., Tserel, L., Link, M., Kisand, K.V., Ersvaer, E., Meager, A., Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines (2010) J. Exp. Med., 207, pp. 299-308. , http://dx.doi.org/10.1084/jem.20091669
dc.descriptionGaffen, S.L., Structure and signalling in the IL-17 receptor family (2009) Nat. Rev. Immunol., 9, pp. 556-567. , http://dx.doi.org/10.1038/nri2586
dc.descriptionBoisson, B., Wang, C., Pedergnana, V., Wu, L., Cypowyj, S., Rybojad, M., Belkadi, A., Casanova, J.-L., A biallelic ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis (2013) Immunity, 39, pp. 676-686. , http://dx.doi.org/10.1016/j.immuni.2013.09.002
dc.descriptionLeonardi, C., Matheson, R., Zachariae, C., Cameron, G., Li, L., Edson-Heredia, E., Braun, D., Banerjee, S., Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis (2012) N. Engl. J. Med., 366, pp. 1190-1199. , http://dx.doi.org/10.1056/NEJMoa1109997
dc.descriptionPatel, D.D., Lee, D.M., Kolbinger, F., Antoni, C., Effect of IL-17A blockade with secukinumab in autoimmune diseases (2013) Ann. Rheum. Dis., 72 (SUPPL. 2), pp. 3116-3123. , http://dx.doi.org/10.1136/annrheumdis-2012-202371
dc.descriptionPapp, K.A., Leonardi, C., Menter, A., Ortonne, J.P., Krueger, J.G., Kricorian, G., Aras, G., Baumgartner, S., Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis (2012) N. Engl. J. Med., 366, pp. 1181-1189. , http://dx.doi.org/10.1056/NEJMoa1109017
dc.descriptionMiossec, P., Kolls, J.K., Targeting IL-17 and TH17 cells in chronic inflammation (2012) Nat. Rev. Drug Discov., 11, pp. 763-776. , http://dx.doi.org/10.1038/nrd3794
dc.descriptionFord, A.C., Peyrin-Biroulet, L., Opportunistic infections with antitumor necrosis factor-alpha therapy in inflammatory bowel disease: metaanalysis of randomized controlled trials (2013) Am. J. Gastroenterol., 108, pp. 1268-1276. , http://dx.doi.org/10.1038/ajg.2013.138
dc.descriptionShen, F., Ruddy, M.J., Plamondon, P., Gaffen, S.L., Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17-and TNF-α-induced genes in bone cells (2005) J. Leukoc. Biol., 77, pp. 388-399. , http://dx.doi.org/10.1189/jlb.0904490
dc.descriptionShen, F., Hu, Z., Goswami, J., Gaffen, S.L., Identification of common transcriptional regulatory elements in interleukin-17 target genes (2006) J. Biol. Chem., 281, pp. 24138-24148. , http://dx.doi.org/10.1074/jbc.M604597200
dc.descriptionKarlsen, J.R., Borregaard, N., Cowland, J.B., Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-alpha is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ (2010) J. Biol. Chem., 285, pp. 14088-14100. , http://dx.doi.org/10.1074/jbc.M109.017129
dc.descriptionYang, J., Goetz, D., Li, J.Y., Wang, W., Mori, K., Setlik, D., Du, T., Barasch, J., An iron delivery pathway mediated by a lipocalin (2002) Mol. Cell, 10, pp. 1045-1056. , http://dx.doi.org/10.1016/S1097-2765(02)00710-4
dc.descriptionGoetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., Strong, R.K., The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition (2002) Mol. Cell, 10, pp. 1033-1043. , http://dx.doi.org/10.1016/S1097-2765(02)00708-6
dc.descriptionChan, Y.R., Liu, J.S., Pociask, D.A., Zheng, M., Mietzner, T.A., Berger, T., Mak, T.W., Kolls, J.K., Lipocalin 2 is required for pulmonary host defense against Klebsiella infection (2009) J. Immunol., 182, pp. 4947-4956. , http://dx.doi.org/10.4049/jimmunol.0803282
dc.descriptionFlo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., Akira, S., Aderem, A., Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron (2004) Nature, 432, pp. 917-921. , http://dx.doi.org/10.1038/nature03104
dc.descriptionBerger, T., Togawa, A., Duncan, G.S., Elia, A.J., You-Ten, A., Wakeham, A., Fong, H.E., Mak, T.W., Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemiareperfusion injury (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 1834-1839. , http://dx.doi.org/10.1073/pnas.0510847103
dc.descriptionClaudio, E., Sonder, S.U., Saret, S., Carvalho, G., Ramalingam, T.R., Wynn, T.A., Chariot, A., Siebenlist, U., The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation (2009) J. Immunol., 182, pp. 1617-1630. , http://www.jimmunol.org/content/182/3/1617.long
dc.descriptionSolis, N.V., Filler, S.G., Mouse model of oropharyngeal candidiasis (2012) Nat. Protoc., 7, pp. 637-642. , http://dx.doi.org/10.1038/nprot.2012.011
dc.descriptionHernández-Santos, N., Gaffen, S.L., Th17 cells in immunity to Candida albicans (2012) Cell Host Microbe, 11, pp. 425-435. , http://dx.doi.org/10.1016/j.chom.2012.04.008
dc.descriptionPuel, A., Picard, C., Cypowyj, S., Lilic, D., Abel, L., Casanova, J.L., Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? (2010) Curr. Opin. Immunol., 22, pp. 467-474. , http://dx.doi.org/10.1016/j.coi.2010.06.009
dc.descriptionAcosta-Rodriguez, E.V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F., Napolitani, G., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells (2007) Nat. Immunol., 8, pp. 639-646. , http://dx.doi.org/10.1038/ni1467
dc.descriptionDevireddy, L.R., Gazin, C., Zhu, X., Green, M.R., A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake (2005) Cell, 123, pp. 1293-1305. , http://dx.doi.org/10.1016/j.cell.2005.10.027
dc.descriptionDevireddy, L.R., Teodoro, J.G., Richard, F.A., Green, M.R., Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation (2001) Science, 293, pp. 829-834. , http://dx.doi.org/10.1126/science.1061075
dc.descriptionRaffatellu, M., George, M.D., Akiyama, Y., Hornsby, M.J., Nuccio, S.P., Paixao, T.A., Butler, B.P., Baumler, A.J., Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimu-rium for growth and survival in the inflamed intestine (2009) Cell Host Microbe, 5, pp. 476-486. , http://dx.doi.org/10.1016/j.chom.2009.03.011
dc.descriptionLiu, J.Z., Pezeshki, M., Raffatellu, M., Th17 cytokines and hostpathogen interactions at the mucosa: dichotomies of help and harm (2009) Cytokine, 48, pp. 156-160. , http://dx.doi.org/10.1016/j.cyto.2009.07.005
dc.descriptionLiu, Z., Petersen, R., Devireddy, L., Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections (2013) J. Immunol., 190, pp. 4692-4706. , http://dx.doi.org/10.4049/jimmunol.1202411
dc.descriptionHolmes, M.A., Paulsene, W., Jide, X., Ratledge, C., Strong, R.K., Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration (2005) Structure, 13, pp. 29-41. , http://dx.doi.org/10.1016/j.str.2004.10.009
dc.descriptionGuglani, L., Gopal, R., Rangel-Moreno, J., Junecko, B.F., Lin, Y., Berger, T., Mak, T.W., Khader, S.A., Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections (2012) PLoS One, 7, pp. e50052. , http://dx.doi.org/10.1371/journal.pone.0050052
dc.descriptionHu, C.J., Bai, C., Zheng, X.D., Wang, Y.M., Wang, Y., Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans (2002) J. Biol. Chem., 277, pp. 30598-30605. , http://dx.doi.org/10.1074/jbc.M204545200
dc.languageen
dc.publisher
dc.relationInfection and Immunity
dc.rightsaberto
dc.sourceScopus
dc.titleInterleukin-17-induced Protein Lipocalin 2 Is Dispensable For Immunity To Oral Candidiasis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución