dc.creatorLisboa A.C.L.
dc.creatorWatkinson A.P.
dc.date1999
dc.date2015-06-30T15:23:04Z
dc.date2015-11-26T15:30:07Z
dc.date2015-06-30T15:23:04Z
dc.date2015-11-26T15:30:07Z
dc.date.accessioned2018-03-28T22:38:38Z
dc.date.available2018-03-28T22:38:38Z
dc.identifier
dc.identifierPowder Technology. Elsevier Science S.a., Lausanne, Switzerland, v. 101, n. 2, p. 151 - 156, 1999.
dc.identifier325910
dc.identifier10.1016/S0032-5910(98)00166-1
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0033083215&partnerID=40&md5=5410ccf745ba60b8c5f8b5ba5187f3c1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101298
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101298
dc.identifier2-s2.0-0033083215
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261921
dc.descriptionStandard thermogravimetric apparatuses offer highly desirable conditions for the study of the chemical kinetics of oil shale pyrolysis and combustion, such as controlled temperature and simultaneous weighing of the sample. The thermogravimetric analyses must be carried out in such conditions that the observed reaction rate is identical to the rate of the chemical kinetics. This study investigated the effects of key parameters which could affect this identity, such as: the gas flow rate, the gas purity, the gas nature, the particle sizes and sample sizes. The paper suggests values for these parameters.Standard thermogravimetric apparatuses offer highly desirable conditions for the study of the chemical kinetics of oil shale pyrolysis and combustion, such as controlled temperature and simultaneous weighing of the sample. The thermogravimetric analyses must be carried out in such conditions that the observed reaction rate is identical to the rate of the chemical kinetics. This study investigated the effects of key parameters which could affect this identity, such as: the gas flow rate, the gas purity, the gas nature, the particle sizes and sample sizes. The paper suggests values for these parameters.
dc.description101
dc.description2
dc.description151
dc.description156
dc.descriptionHaddadin, R.A., Mizyed, F.A., Thermogravimetric analysis kinetics of Jordan oil shale (1974) Ind. Eng. Chem. Process Des. Dev., 13 (4), pp. 332-336
dc.descriptionCampbell, J.H., Koskinas, G.H., Stout, N.D., Kinetics of oil generation from Colorado oil shale (1978) Fuel, 57, pp. 372-376
dc.descriptionRajeshwar, K., The kinetics of the thermal decomposition of green river oil shale Kerogen by non-isothermal thermogravimetry (1981) Thermochimica Acta, 45, pp. 253-263
dc.descriptionThakur, D.S., Nuttall H.E., Jr., Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry (1987) Ind. Eng. Chem. Res., 26, pp. 1351-1356
dc.descriptionCapudi, G., (1990) Kinetics and Mechanism of Thermal Decomposition of Oil Shale from Irati Formation, , MSc Thesis, Instituto de Quimica, Universidade Federal do Rio de Janeiro, in Portuguese
dc.descriptionHubbard, A.B., Robinson, W.E., A Thermal Decomposition Study of Colorado Oil Shale (1950) USA Bureau of Mines Report of Investigations, 4744. , USA
dc.descriptionDiricco, L., Barrick, P.L., Pyrolysis of oil shale (1956) Ind. Eng. Chem., 48 (8), pp. 1316-1319
dc.descriptionAllred, V.D., Kinetics of oil shale pyrolysis (1966) Chem. Eng. Prog., 62 (8), pp. 55-60
dc.descriptionShih, S.M., Sohn, H.Y., Nonisothermal determination of the intrinsic kinetics of oil generation from oil shale (1980) Ind. Eng. Chem. Process Des. Dev., 19, pp. 420-426
dc.descriptionYang, H.S., Sohn, H.Y., Kinetics of oil generation from oil shale from Liaoning Province of China (1984) Fuel, 63, pp. 1511-1514
dc.descriptionLisboa, A.C.L., (1997) Investigations on Oil Shale Particle Reactions, , PhD Thesis, The University of British Columbia, Vancouver
dc.languageen
dc.publisherElsevier Science S.A., Lausanne, Switzerland
dc.relationPowder Technology
dc.rightsfechado
dc.sourceScopus
dc.titleOperating Conditions For Oil Shale Thermogravimetry
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución