dc.creatorRittner L.
dc.creatorDe Alencar Lotufo R.
dc.date2009
dc.date2015-06-26T13:32:34Z
dc.date2015-11-26T15:29:13Z
dc.date2015-06-26T13:32:34Z
dc.date2015-11-26T15:29:13Z
dc.date.accessioned2018-03-28T22:37:57Z
dc.date.available2018-03-28T22:37:57Z
dc.identifier9780819475107
dc.identifierProgress In Biomedical Optics And Imaging - Proceedings Of Spie. , v. 7259, n. , p. - , 2009.
dc.identifier16057422
dc.identifier10.1117/12.811754
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-71749095199&partnerID=40&md5=131f61c9bf5424d60e365f859c284125
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91577
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91577
dc.identifier2-s2.0-71749095199
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261783
dc.descriptionThis paper presents a segmentation technique for diffusion tensor imaging (DTI). This technique is based on a tensorial morphological gradient (TMG), defined as the maximum dissimilarity over the neighborhood. Once this gradient is computed, the tensorial segmentation problem becomes an scalar one, which can be solved by conventional techniques, such as watershed transform and thresholding. Similarity functions, namely the dot product, the tensorial dot product, the J-divergence and the Frobenius norm, were compared, in order to understand their differences regarding the measurement of tensor dissimilarities. The study showed that the dot product and the tensorial dot product turned out to be inappropriate for computation of the TMG, while the Frobenius norm and the J-divergence were both capable of measuring tensor dissimilarities, despite the distortion of Frobenius norm, since it is not an affine invariant measure. In order to validate the TMG as a solution for DTI segmentation, its computation was performed using distinct similarity measures and structuring elements. TMG results were also compared to fractional anisotropy. Finally, synthetic and real DTI were used in the method validation. Experiments showed that the TMG enables the segmentation of DTI by watershed transform or by a simple choice of a threshold. The strength of the proposed segmentation method is its simplicity and robustness, consequences of TMG computation. It enables the use, not only of well-known algorithms and tools from the mathematical morphology, but also of any other segmentation method to segment DTI, since TMG computation transforms tensorial images in scalar ones. © 2009 Copyright SPIE - The International Society for Optical Engineering.
dc.description7259
dc.description
dc.description
dc.description
dc.descriptionZhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A., Level set modeling and segmentation of dt-mri brain data (2003) J. Electronic Imaging, 12, pp. 125-133
dc.descriptionZiyan, U., Tuch, D., Westin, C., Segmentation of thalamic nuclei from DTI using spectral clustering (2006) MICCAI'06], Lect. Notes Comp. Sci. 4191, pp. 807-814
dc.descriptionWeldeselassie, Y., Hamarneh, G., Dt-mri segmentation using graph cuts (2007) Medical Imaging 2007: Image Processing, , SPIE
dc.descriptionWang, Z., Vemuri, B., Dti segmentation using an information theoretic tensor dissimilarity measure (2005) IEEE Transactions on Medical Imaging
dc.descriptionAwate, S., Gee, J., A fuzzy, nonparametric segmentation framework for dti and mri analysis (2007) IPMI, 296-307
dc.descriptionWiegell, M., Tuch, D., Larson, H., Wedeen, V., Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging (2003) NeuroImage, 19, pp. 391-402
dc.descriptionDougherty, E.R., Lotufo, R.A., (2003) Hands-on Morphological Image Processing, TT59. , SPIE
dc.descriptionFalcão, A., Stolfi, J., Lotufo, R., The image foresting transform: Theory, algorithms, and applications (2004) IEEE Trans. on Pattern Analysis and Machine Intelligence, 26, pp. 19-29. , Jan
dc.descriptionFalcão, A., Cunha, B., and Lotufo, R., Design of connected operators using the image foresting transform, in [Proc. SPIE 4322, p. 468-479, Medical Imaging 2001: Image Processing, Milan Sonka
dc.descriptionKenneth M. Hanson
dc.descriptionEds.], Sonka, M. and Hanson, K. M., eds., Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference 4322, 468-479 (July 2001)Falcão, A.X., Costa, L.F., da Cunha, B.S., Multiscale skeletons by image foresting transform and its applications to neuromorphometry (2002) Pattern Recognition, 35, pp. 1571-1582. , Apr
dc.descriptionCastellano, G., Lotufo, R., Falcao, A., Cendes, F., Characterization of the human cortex in mr images through the image foresting transform (2003) Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, 1, pp. I357-I360. , 1 Sept
dc.descriptionLotufo, R., Falcão, A., The Ordered Queue and the Optimality of the Watershed Approaches (2000) 5th International Symposium on Mathematical Morphology, pp. 341-350. , Kluwer Academic, Palo Alto (CA, USA June
dc.descriptionLotufo, R., Falcão, A., Zampirolli, F., IFT-watershed from gray-scale marker (2002) XV Brazilian Symp. on Computer Graph. and Image Proc, pp. 146-152. , IEEE Press, Fortaleza, Brazil Oct
dc.descriptionHeijmans, H.J.A.M., (1994) Morphological Image Operators, , Academic Press, Boston
dc.descriptionRittner, L., Lotufo, R., Diffusion tensor imaging segmentation by watershed transform on tensorial morphological gradient (2008) SIBGRAPI '08: Proceedings of the 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing, pp. 196-203. , IEEE Computer Society
dc.descriptionRittner, L., Flores, F., Lotufo, R., New tensorial representation of color images: Tensorial morphological gradient applied to color image segmentation (2007) SIBGRAPI '07: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 45-52. , IEEE Computer Society
dc.descriptionDanielson, D.A., (2003) Vectors and Tensors in Engineering and Physics], Westview (Perseus)
dc.descriptionBishop, R.L., Goldberg, S.I., (1980) Tensor Analysis on Manifolds, , Dover
dc.descriptionBasser, P., Pierpaoli, C., Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor mri (1996) Journal of Magnetic Resonance, 111, pp. 209-219. , June
dc.descriptionPierpaoli, C., Basser, P.J., Toward a quantitative assessment of diffusion anisotropy (1996) Magnetic Resonance in Medicine, 36 (6), pp. 893-906
dc.descriptionAlexander, D., Gee, J., Bajcsy, R., Similarity measures for matching diffusion tensor images (1999) [British Machine Vision Conference]
dc.descriptionJones, D.K., Horsfield, M.A., Simmons, A., Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging (1999) Magnetic Resonance in Medicine, 42 (3), pp. 515-525
dc.descriptionCampbell, J.S., Siddiqi, K., Rymar, V.V., Sadikot, A.F., Pike, G.B., Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques (2005) Neuroimage, 27, pp. 725-736. , October
dc.languageen
dc.publisher
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rightsfechado
dc.sourceScopus
dc.titleSegmentation Of Dti Based On Tensorial Morphological Gradient
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución