dc.creatorHollanda L.M.
dc.creatorLobo A.O.
dc.creatorLancellotti M.
dc.creatorBerni E.
dc.creatorCorat E.J.
dc.creatorZanin H.
dc.date2014
dc.date2015-06-25T17:50:03Z
dc.date2015-11-26T15:28:25Z
dc.date2015-06-25T17:50:03Z
dc.date2015-11-26T15:28:25Z
dc.date.accessioned2018-03-28T22:37:08Z
dc.date.available2018-03-28T22:37:08Z
dc.identifier
dc.identifierMaterials Science And Engineering C. , v. 39, n. 1, p. 288 - 298, 2014.
dc.identifier9284931
dc.identifier10.1016/j.msec.2014.03.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897879767&partnerID=40&md5=34318353fed9707e1156b70b7167d25c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85757
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85757
dc.identifier2-s2.0-84897879767
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261597
dc.descriptionGraphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5 m2/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. © 2014 Elsevier B.V.
dc.description39
dc.description1
dc.description288
dc.description298
dc.descriptionVardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Functionalized carbon nanotubes: Biomedical applications (2012) Int. J. Nanomedicine, 7, pp. 5361-5374
dc.descriptionZhou, X., Laroche, F., Lamers, G.E.M., Torraca, V., Voskamp, P., Lu, T., Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos (2012) Nano Res., 5, pp. 703-709
dc.descriptionMastrobattista, E., Van Der Aa, M.A., Hennink, W.E., Crommelin, D.J., Artificial viruses: A nanotechnological approach to gene delivery (2006) Nat. Rev. Drug Discov., 5, pp. 115-121
dc.descriptionLobo, A.O., Corat, M.A.F., Antunes, E.F., Ramos, S.C., Pacheco-Soares, C., Corat, E.J., Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma (2012) Mater. Sci. Eng. C-Mater., 32, pp. 648-652
dc.descriptionPutnam, D., Polymers for gene delivery across length scales (2006) Nat. Mater., 5, pp. 439-451
dc.descriptionRyoo, S.R., Kim, Y.K., Kim, M.H., Min, D.H., Behaviors of NIH-3T3 fibroblasts on graphene and carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies (2010) ACS Nano., 4, pp. 6587-6598
dc.descriptionMisra, S.K., Kondaiah, P., Bhattacharya, S., Rao, C.N., Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins (2012) Small, 8, pp. 131-143
dc.descriptionHarrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353
dc.descriptionKaya, C., Singh, I., Boccaccini, A.R., Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD) (2008) Adv. Eng. Mater., 10, pp. 131-138
dc.descriptionHe, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., A Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis (2010) Adv. Funct. Mater., 20, pp. 453-459
dc.descriptionJang, H., Kim, Y.K., Kwon, H.M., Yeo, W.S., Kim, D.E., Min, D.H., A graphene-based platform for the assay of duplex-DNA unwinding by helicase (2010) Angew. Chem. Intern. Ed., 49, pp. 5703-5707
dc.descriptionDe La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Carbon nanotubes as photoacoustic molecular imaging agents in living mice (2008) Nat. Nanotechnol., 3, pp. 557-562
dc.descriptionLiu, Z., Robinson, J.T., Sun, X., Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs (2008) J. Am. Chem. Soc., 130, pp. 10876-10877
dc.descriptionHu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Graphene-based antibacterial paper (2010) ACS Nano., 4, pp. 4317-4323
dc.descriptionPark, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J. Biol. Chem., 278, pp. 50212-50216
dc.descriptionDe Andrade, L.R., Sandin Brito, A., De Souza Melero, A.M.G., Zanin, H., Jose Ceragioli, H., Baranauskas, V., Silva Cunha, K., Pierre Irazusta, S., Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test (2014) Ecotoxicol. Environ. Saf., 99, pp. 92-97
dc.descriptionBottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol. Lett., 160, pp. 121-126
dc.descriptionWorle-Knirsch, J.M., Pulskamp, K., Krug, H.F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays (2006) Nano Lett., 6, pp. 1261-1268
dc.descriptionCasey, A., Davoren, M., Herzog, E., Lyng, F.M., Byrne, H.J., Chambers, G., Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45, pp. 34-40
dc.descriptionCasey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45, pp. 1425-1432
dc.descriptionHurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue (2006) Carbon, 44, pp. 1028-1033
dc.descriptionZanin, H., Peterlevitz, A.C., Ceragioli, H.J., Rodrigues, A.A., Belangero, W.D., Baranauskas, V., Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond (2012) Mater. Sci. Eng. C-Mate. Biol. Appl., 32, pp. 2340-2343
dc.descriptionCasey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis con.rms the interactions between single-walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (7), pp. 1425-1432
dc.descriptionIsobe, H., Tanaka, T., Maeda, R., Noiri, E., Solin, N., Yudasaka, M., Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal free carbon nanotubes aggregates (2006) Angew. Chem. Int. Ed. Engl., 45 (40), pp. 6676-6680
dc.descriptionBhirde, A.A., Patel, S., Sousa, A.A., Patel, V., Molinolo, A.A., Ji, Y.M., Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice (2010) Nanomedicine - Uk., 5, pp. 1535-1546
dc.descriptionFoldvari, M., Bagonluri, M., Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues (2008) Nanomed-Nanotechnol., 4, pp. 183-200
dc.descriptionMaynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V., Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material (2004) J. Toxicol. Env. Heal A., 67, pp. 87-107
dc.descriptionTejral, G., Panyala, N.R., Havel, J., Carbon nanotubes: Toxicological impact on human health and environment (2009) J. Appl. Biomed., 7, pp. 1-13
dc.descriptionZhang, Y.B., Xu, Y., Li, Z.G., Chen, T., Lantz, S.M., Howard, P.C., Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells (2011) ACS Nano., 5, pp. 7020-7033
dc.descriptionPacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells (2008) Environ. Health Perspect., 116, pp. 1211-1217
dc.descriptionShvedova, A.A., Pietroiusti, A., Fadeel, B., Kagan, V.E., Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress (2012) Toxicol. Appl. Pharmacol., 261, pp. 121-133
dc.descriptionYuan, J., Gao, H., Sui, J., Duan, H., Chen, W.N., Ching, C.B., Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2012) Toxicol. Sci., 126, pp. 149-161
dc.descriptionYuan, J., Gao, H., Ching, C.B., Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2011) Toxicol. Lett., 207, pp. 213-221
dc.descriptionMurray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes (2009) Toxicology, 257, pp. 161-171
dc.descriptionDing, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J.P., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast (2005) Nano Lett., 5, pp. 2448-2464
dc.descriptionYan, L., Zhao, F., Li, S., Hu, Z., Zhao, Y., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes (2011) Nanoscale, 3, pp. 362-382
dc.descriptionYan, X.B., Gu, Y.H., Huang, D., Gan, L., Wu, L.X., Huang, L.H., Binding tendency with oligonucleotides and cell toxicity of cetyltrimethyl ammonium bromide-coated single-walled carbon nanotubes (2011) Trans. Nonferrous Met. Soc., 21, pp. 1085-1091
dc.descriptionChan, W.C.W., Elucidating the Interactions of Nanomaterials with Biological Systems (2010) Nemb 2010: Proceedings of the Asme First Global Congress on Nanoengineering for Medicine and Biology - 2010, pp. 111-112
dc.descriptionLam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134
dc.descriptionSato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo (2005) Mol. Biosyst., 1, pp. 176-182
dc.descriptionWei, H., Wei, J., Wu, Y., Liu, L., Fan, S., (2013) Jiang K, , High-Strength Composite Yarns Derived From Oxygen Plasma Modified Super-aligned Carbon Nanotube Arrays Nano Res 1-9
dc.descriptionSingh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors (2005) J. Am. Chem. Soc., 127, pp. 4388-4396
dc.descriptionLiu, Y., Wu, D.C., Zhang, W.D., Jiang, X., He, C.B., Chung, T.S., Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA (2005) Angew. Chem., 44, pp. 4782-4785
dc.descriptionZangmeister, R.A., Maslar, J.E., Opdahl, A., Tarlov, M.J., Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces (2007) Langmuir, 23, pp. 6252-6256
dc.descriptionTasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106, pp. 1105-1136
dc.descriptionZheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., DNA-assisted dispersion and separation of carbon nanotubes (2003) Nat. Mater., 2, pp. 338-342
dc.descriptionJu, S.Y., Doll, J., Sharma, I., Papadimitrakopoulos, F., Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide (2008) Nat. Nanotechnol., 3, pp. 356-362
dc.descriptionSanchez-Pomales, G., Santiago-Rodriguez, L., Cabrera, C.R., DNA-functionalized carbon nanotubes for biosensing applications (2009) J. Nanosci Nanotechnol., 9, pp. 2175-2188
dc.descriptionGhosh, S., Dutta, S., Gomes, E., Carroll, D., D'Agostino, R., Olson, J., Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes (2009) ACS Nano., 3, pp. 2667-2673
dc.descriptionCheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.X., DNA and carbon nanotubes as medicine (2010) Adv. Drug Deliv. Rev., 62, pp. 633-649
dc.descriptionFirme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems (2010) Nanomed-Nanotechnol., 6, pp. 245-256
dc.descriptionLundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 14265-14270
dc.descriptionCedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 2050-2055
dc.descriptionGe, C.C., Du, J.F., Zhao, L.N., Wang, L.M., Liu, Y., Li, D.H., Binding of blood proteins to carbon nanotubes reduces cytotoxicity (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 16968-16973
dc.descriptionNel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557
dc.descriptionShim, M., Kam, N.W.S., Chen, R.J., Li, Y.M., Dai, H.J., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition (2002) Nano Lett., 2, pp. 285-288
dc.descriptionZhang, L., Zhao, G.C., Wei, X.W., Yang, Z.S., A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes (2005) Electroanal., 17, pp. 630-634
dc.descriptionFeazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J., Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design (2007) J. Am. Chem. Soc., 129, pp. 8438-8439
dc.descriptionLobo, A.O., Zanin, H., Siqueira, I.A.W.B., Leite, N.C.S., Marciano, F.R., Corat, E.J., (2013) Mater. Sc. Eng. C-Mater. Biol. Appl., 33, pp. 4305-4312
dc.descriptionGrinet, M.A.V.M., Zanin, H., Granato, A.E.C., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds J. Mater. Chem. B., , http://dx.doi.org/10.1039/C3TB21525C
dc.descriptionFletcher, D.A., Mullins, D., Cell mechanics and the cytoskeleton (2010) Nature, 463, pp. 485-492
dc.descriptionMachado, C.M., Schenka, A., Vassallo, J., Tamashiro, W.M., Goncalves, E.M., Genari, S.C., Morphological characterization of a human glioma cell line (2005) Cancer Cell Int., 5, p. 13
dc.descriptionIzidoro, M.S.J., Varela, J.N., Alves, D.A., Pereira, R.F.C., Brocchi, M., Lancellotti, M., Effects of Salmonella enteritidis serovar typhimurium Infection in Adenocarcinomic human alveolar basal epithelial cells A549 in vitro: Bacteria induce apoptosis in adenocarcinomic cell (2012) J. Bacteriol. Parasitol., p. 3
dc.descriptionMosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63
dc.descriptionBorenfreund, E., Puerner, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1985) J. Tissue Cult. Methods, 9, pp. 7-9
dc.descriptionMachado, D., Shishido, S.M., Queiroz, K.C., Oliveira, D.N., Faria, A.L., Catharino, R.R., Irradiated riboflavin diminishes the aggressiveness of melanoma in vitro and in vivo (2013) PLoS ONE, 8, p. 54269
dc.descriptionAntunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44, pp. 2202-2211
dc.descriptionZanin, H., May, P.W., Hamanaka, M., Corat, E.J., Field emission from hybrid diamond-like carbon and carbon nanotube composite structures ACS Appl. Mater. Iinterfaces, 5 (23), pp. 12238-12243
dc.descriptionZanin, H., Teofilo, R.F., Peterlevitz, A.C., Oliveira, U., De Paiva, J.C., Ceragioli, H.J., Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution (2013) J. Appl. Electrochem., 43, pp. 323-330
dc.descriptionZanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications J (2013) Mater. Chem. B, 1, pp. 4947-4955
dc.descriptionCompton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T., Chemically active reduced graphene oxide with tunable c/o ratios (2011) ACS Nano., 5, pp. 4380-4391
dc.descriptionZhanga, Y., Zhaoa, J., Sunb, B., Chena, X., Lia, Q., Qiua, L., Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes (2012) Electrochim. Acta, 61, pp. 185-190
dc.descriptionZanin, H., Saito, E., Ceragioli, H.J., Baranauskas, V., Corat, E.J., Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices (2014) Mater. Res. Bull., 49, pp. 487-493
dc.descriptionRamalingam, P., Pusuluri, S.T., Periasamy, S., Veerabahu, R., Kulandaivel, J., Role of deoxy group on the high concentration of graphene in surfactant/water media (2013) Rsc Adv., 3, pp. 2369-2378
dc.descriptionDe Nicola, M., Gattia, D.M., Bellucci, S., De Bellis, G., Micciulla, F., Pastore, R., Effect of different carbon nanotubes on cell viability and proliferation (2007) J. Phys-Condens Mater., p. 19
dc.descriptionMwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) J. Mater. Chem., 17, pp. 1894-1902
dc.descriptionKalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Carbon, 45, pp. 2266-2272
dc.descriptionZhang, D.W., Yi, C.Q., Zhang, J.C., Chen, Y., Yao, X.S., Yang, M.S., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, p. 18
dc.descriptionMacdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Brahmbhatt, H., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics (2007) Cancer Cell, 11 (5), pp. 431-445
dc.descriptionZhang, L., Lu, Z., Zhao, Q., Huang, J., Shen, H., Zhang, Z., Enhanced chemotherapy efficacy by sequential delivery of siRNA and Anticancer drugs using pei-grafted graphene oxide (2011) Small, 7, pp. 460-464
dc.descriptionChang, Y., Yang, S.-T., Liu, J.-H., Dong, E., Wang, Y., Cao, A., Liu, Y., Wang, H., In vitro toxicity evaluation of graphene oxide on A549 cells (2011) Toxicol. Lett., 200, pp. 201-210
dc.descriptionLiao, K.-H., Lin, Y.-S., Macosko, C.W., Haynes, C.L., Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts (2011) ACS Appl. Mater. Interfaces, 3, pp. 2607-2615
dc.languageen
dc.publisher
dc.relationMaterials Science and Engineering C
dc.rightsfechado
dc.sourceScopus
dc.titleGraphene And Carbon Nanotube Nanocomposite For Gene Transfection
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución