dc.creatorTeschke O.
dc.creatorDe Souza E.F.
dc.creatorCeotto G.
dc.date1999
dc.date2015-06-30T15:21:09Z
dc.date2015-11-26T15:28:10Z
dc.date2015-06-30T15:21:09Z
dc.date2015-11-26T15:28:10Z
dc.date.accessioned2018-03-28T22:36:51Z
dc.date.available2018-03-28T22:36:51Z
dc.identifier
dc.identifierLangmuir. Acs, Washington, Dc, United States, v. 15, n. 15, p. 4935 - 4939, 1999.
dc.identifier7437463
dc.identifier10.1021/la980843s
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0345633688&partnerID=40&md5=ffbcfce86a6f8f673e0d2123cead6c89
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101080
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101080
dc.identifier2-s2.0-0345633688
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261525
dc.descriptionThe force acting on the tip during its immersion in the double layer region was measured for various tip-approaching velocities. The double layer electric field acting on the tip results in a repulsive force component when the tip is immersed in the diffuse layer corresponding to a region far away from the liquid/solid interface (approximately 100 nm) and an attraction when it is immersed in the near-surface layer (approximately 2 nm). For higher values than 10 μm/s (in water), the transient force on the tip results from the interaction of two double layers (Si3N4 tip and mica substrate) with their charge distribution in a nonequilibrium situation. In the inner layer, the thickness of the interaction region as well as the force on the tip decrease with an increasing approaching speed while in the diffuse layer there is a force increase with an approaching velocity. Dimethyl sulfoxide shows only a repulsive force, indicating that the attraction in the near-surface layer in water is associated with a variable water dielectric constant at the liquid/solid interface. In water the measured transient forces as a function of the tip/substrate distance show a relaxation time of approximately 1.1 ms when the tip is immersed in the inner layer while the diffuse layer shows a relaxation time of approximately 5.6 ms. The measured diffuse layer relaxation time for dimethyl sulfoxide is approximately 0.5 ms.
dc.description15
dc.description15
dc.description4935
dc.description4939
dc.descriptionBowden, J.W., Bolland, M.D.A., Posner, A.M., Quick, J.P., (1973) Nature Phys. Sci., 81, p. 245
dc.descriptionDugger, D.L., Stanton, J.H., Irby, B.N., McConnell, B.L., Cummings, W.W., Maatman, R.W., (1964) J. Phys. Chem., 68, p. 757
dc.descriptionDavis, J.A., James, R.O., Leckie, J.O., (1978) J. Colloid Interface Sci., 63, p. 480
dc.descriptionWeaver, D.W., Feke, D.L., (1985) J. Colloid Interface Sci., 103, p. 267
dc.descriptionFrens, G., Overbeek, J.T.G., (1972) J. Colloid Interface Sci., 38, p. 376
dc.descriptionWeise, G.R., Healy, T.W., (1970) Trans. Faraday Soc., 66, p. 480
dc.descriptionLong, J.A., Osmond, D.W., Vincent, B., (1973) J. Colloid Interface Sci., 42, p. 545
dc.descriptionSpielman, L.A., Friedlander, S.K., (1974) J. Colloid Interface Sci., 44, p. 22
dc.descriptionPrieve, D.C., Ruckenstein, E., (1976) J. Colloid Interface Sci., 57, p. 547
dc.descriptionSmall, H., (1974) J. Colloid Interface Sci., 48, p. 147
dc.descriptionDiMarzio, E.A., Guttman, C.M., (1968) J. Polym. Sci., 137, p. 276
dc.descriptionMandralis, Z.I., Wernet, J.H., Feke, D.L., (1996) J. Colloid Interface Sci., 182, p. 26
dc.descriptionFlicker, S.G., Tipa, J.L., Bike, S.G., (1993) J. Colloid Interface Sci., 158, p. 317
dc.descriptionIsraelachvili, J.N., Adams, G.E., (1978) J. Chem. Soc., Faraday Trans. 1, 74, p. 975
dc.descriptionIsraelachvili, J.N., (1978) Faraday Discuss. Chem. Soc., 65, p. 20
dc.descriptionChristenson, H.K., (1984) J. Chem. Soc., Faraday Trans. 1, 80, p. 1933
dc.descriptionIsraelachvili, J.N., Tirrel, M., Klein, J., Almog, Y., (1984) Macromolecules, 17, p. 204
dc.descriptionMcGuiggan, P.M., Israelachvili, J.N., (1990) J. Mater. Res., 5, p. 2232
dc.descriptionTeschke, O., Douglas, R.A., Prolla, T.A., (1997) Appl. Phys. Lett., 70, p. 1977
dc.descriptionSassaki, R.M., Douglas, R.A., Kleinke, M.U., Teschke, O., (1996) J. Vac. Sci. Technol. B, 14, p. 432
dc.descriptionNishimura, S., Tateyama, H., Tsunematsu, K., Jinnai, K., (1992) J. Colloid Interface Sci., 152, p. 359
dc.descriptionBergstrom, L., Bostedt, E., (1990) Colloids Surf. A, 49, p. 183
dc.descriptionHarane, D.L., Bousse, L.J., Shott, J.D., Meindl, J.D., (1987) IEEE Trans. Electron Devices, 34, p. 1700
dc.descriptionDrummond, C.J., Senden, T.J., (1994) Colloids Surf. A, 87, p. 217
dc.descriptionSokolov, Y., Henderson, G.S., Wicks, F.J., Ozin, G.A., (1997) Appl. Phys. Lett., 70, p. 844
dc.descriptionTeschke, O., Souza, E.F., (1998) Rev. Sci. Instrum., 69, p. 3588
dc.descriptionTeschke, O., Souza, E.F., (1998) Appl. Phys. Lett., 71, p. 3588
dc.descriptionBecker, R., (1964) Electromagnetic and Interactions, , Dover: New York
dc.descriptionBockris, J., Reddy, A., (1970) Modern Electrochemistry, , Plenum: New York
dc.descriptionLyklema, J., Dukhin, S.S., Shilov, V.N., (1983) J. Electroanal. Chem., 1, p. 143
dc.descriptionPopovich, O., Tomkins, R.P.T., (1981) Nonaqueous Solution Chemistry, , John Wiley: New York
dc.languageen
dc.publisherACS, Washington, DC, United States
dc.relationLangmuir
dc.rightsfechado
dc.sourceScopus
dc.titleDouble Layer Relaxation Measurements Using Atomic Force Microscopy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución