dc.creatorTygel M.
dc.creatorSantos L.T.
dc.creatorSchleicher J.
dc.date1999
dc.date2015-06-30T15:21:32Z
dc.date2015-11-26T15:28:07Z
dc.date2015-06-30T15:21:32Z
dc.date2015-11-26T15:28:07Z
dc.date.accessioned2018-03-28T22:36:48Z
dc.date.available2018-03-28T22:36:48Z
dc.identifier
dc.identifierJournal Of Applied Geophysics. , v. 42, n. 3-4, p. 319 - 331, 1999.
dc.identifier9269851
dc.identifier10.1016/S0926-9851(99)00043-9
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0033237252&partnerID=40&md5=46d8aa0651c7a7db6698ba4f958c381e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101119
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101119
dc.identifier2-s2.0-0033237252
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261511
dc.descriptionThe multifocus moveout of Gelchinsky et al. [Gelchinsky, B., Berkovitch, A., Keydar, S., 1997. Multifocusing homeomorphic imaging: Parts I and II: Course Notes, Special Course on Homeomorphic Imaging. Seeheim, Germany] is a powerful tool for stacking multicoverage data in arbitrary configurations. Based on general ray theoretical assumptions and on attractively simple geometrical considerations, the multifocus moveout is designed to express the traveltimes of neighbouring rays arbitrarily located around a fixed central, primary reflected or even diffracted, ray. In this work, the basic derivations and results concerning the multifocus approach are reviewed. A higher-order multifocus moveout expression that generalizes the corresponding one of Gelchinsky is obtained from slight modifications of the original derivation. An alternative form of the obtained multifocus expression that is best suited for numerical implementation is also provided. By means of a simple numerical experiment, we also comment on the accuracy of the multifocus traveltime approximations.
dc.description42
dc.description3-4
dc.description319
dc.description331
dc.descriptionČervený, V., The application of ray tracing to the numerical modelling of seismic wavefields in complex structures (1985) Handbook of Geophysical Exploration, pp. 1-124. , In: Dohr, G. (Ed.), Seismic Shear Waves, Part A: Theory Section I. Seismic 15, Geophysical Press
dc.descriptionDe Bazelaire, E., Normal moveout revisited: Inhomogeneous media and curved interface (1988) Geophysics, 53, pp. 143-157
dc.descriptionGelchinsky, B., The common-reflecting-element (CRE) method (non-uniform asymmetric multifold system) (1988) Ann. Internat. Mtg., ASEG/SEG Intnl. Conf. Exploration Geophysics, pp. 71-75
dc.descriptionGelchinsky, B., Berkovitch, A., Keydar, S., Multifocusing homeomorphic imaging: Parts I and II: Course Notes (1997) Special Course on Homeomorphic Imaging, , Seeheim, Germany
dc.descriptionHöcht, G., (1998) Common-reflection-surface Stack, , Diplomarbeit, Universität Karlsruhe, TH
dc.descriptionHubral, P., Computing true amplitude reflections in a laterally inhomogeneous earth (1983) Geophysics, 48, pp. 1051-1062
dc.descriptionSchleicher, J., Tygel, M., Hubral, P., Parabolic and hyperbolic paraxial two-point traveltimes in 3-D media (1993) Geophys. Prospect., 41, pp. 495-514
dc.descriptionTygel, M., Müller, Th., Hubral, P., Schleicher, J., Eigenwave based multiparameter traveltime expansions (1997) Ann. Internat. Mtg., pp. 1770-1773. , Soc. Expl. Geophys., Expanded Abstracts
dc.descriptionUrsin, B., Quadratic wavefront and traveltime approximations in inhomogeneous layered media with curved interfaces (1982) Geophysics, 47, pp. 1012-1021
dc.languageen
dc.publisher
dc.relationJournal of Applied Geophysics
dc.rightsfechado
dc.sourceScopus
dc.titleMultifocus Moveout Revisited: Derivations And Alternative Expressions
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución