dc.creatorRehman F.
dc.creatorVolpe P.L.O.
dc.creatorAiroldi C.
dc.date2014
dc.date2015-06-25T17:49:59Z
dc.date2015-11-26T15:27:49Z
dc.date2015-06-25T17:49:59Z
dc.date2015-11-26T15:27:49Z
dc.date.accessioned2018-03-28T22:36:30Z
dc.date.available2018-03-28T22:36:30Z
dc.identifier
dc.identifierColloids And Surfaces B: Biointerfaces. Elsevier, v. 119, n. , p. 82 - 89, 2014.
dc.identifier9277765
dc.identifier10.1016/j.colsurfb.2014.03.043
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84902376780&partnerID=40&md5=6fc5108fc300f4b6a0d14d83d6b8132d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85748
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85748
dc.identifier2-s2.0-84902376780
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261441
dc.descriptionThe mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, 13C and 29Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0m2g-1 and pore diameter 8.0-6.0nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration. © 2014 Elsevier B.V.
dc.description119
dc.description
dc.description82
dc.description89
dc.descriptionWu, S.H., Moua, C.Y., Lin, H.P., Synthesis of mesoporous silica nanoparticles (2013) Chem. Soc. Rev., 42, pp. 3862-3875
dc.descriptionFan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Zhao, D., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties (2003) Angew. Chem. Int. Ed., 42, pp. 3146-3150
dc.descriptionChen, H., Wydra, J., Zhang, X., Lee, P.S., Wang, Z., Fan, W., Tsapatsis, M., Hydrothermal synthesis of zeolites with three-dimensionally-ordered mesoporous-imprinted structure (2011) J. Am. Chem. Soc., 133, pp. 12390-12393
dc.descriptionFarokhzad, O.C., Langer, R., Nanomedicine developing smarter therapeutic and diagnostic modalities (2006) Adv. Drug Deliv. Rev., 58, pp. 1456-1459
dc.descriptionAndersson, J., Rosenholm, J., Areva, S., Linden, M., Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices (2004) Chem. Mater., 16, pp. 4160-4167
dc.descriptionBarbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., Larkin, M., Calleja, S., Calleja, G., Silica particles. A novel drug-delivery system (2004) J. Adv. Mater., 16, pp. 1959-1966
dc.descriptionBharali, D.J., Klejbor, I., Stachowiak, E.K., Dutta, P., Roy, I., Kaur, N., Bergey, E.J., Stachowiak, M.K., Organically modified silica nanoparticales. A non-viral vector for in vivo gene delivery and expression in the brain (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 11539-11544
dc.descriptionDoadrio, A.L., Sousa, E.M., Doadrio, J.C., Pérez, J.P., Barba, I.I., Regi, M.V., Mesoporous SBA-15HPLC evaluation for controlled gentamicin drug delivery (2004) J. Control. Release, 97, pp. 125-132
dc.descriptionHwang, Y.J., Chul, O., Oh, S.G., Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers (2005) J. Control. Release, 106, pp. 339-349
dc.descriptionWang, Y., Li, B., Zhang, L., Song, H., Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features: synthesis, characterization, and their oxygen-sensing performance (2013) Langmuir, 29, pp. 1273-1279
dc.descriptionCrudden, C.M., Sateesh, M., Lewis, R., Mercaptopropyl-modified mesoporous silica: a remarkable support for the preparation of a reusable, heterogeneous palladium catalyst for coupling reactions (2005) J. Am. Chem. Soc., 127 (28), pp. 10045-10050
dc.descriptionThielemann, J.P., Girgsdies, F., Schlogl, R., Hess, C., Pore structure and surface area of silica SBA-15: influence of washing and scale-up (2011) Beilstein J. Nanotechnol., 2, pp. 110-118
dc.descriptionFeng, P., Bu, X., Pine, D.J., Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems (2000) Langmuir, 16, pp. 5304-5310
dc.descriptionKruk, M., Jaroniec, M., Characterization of the porous structure of SBA-15 (2000) Chem. Mater., 12, pp. 1961-1968
dc.descriptionSlowing, I., Trewyn, B.G., Lin, V.S.Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells (2006) J. Am. Chem. Soc., 128, pp. 14792-14793
dc.descriptionYang, P., Gai, S., Lin, J., Functionalized mesoporous silica materials for controlled drug delivery (2012) Chem. Soc. Rev., 41, pp. 3679-3698
dc.descriptionLi, Z., Barnes, J.C., Bosoy, A., Stoddart, J.F., Zink, J.I., Mesoporous silica nanoparticles in biomedical applications (2012) Chem. Soc. Rev., 41, pp. 2590-2605
dc.descriptionDashi, S., Murthy, P.N., Nath, L., Chowdhury, P., Kinetic modelling on drug release from controlled drug delivery systems (2010) Acta Poloniae Pharm. Drug Res., 67, pp. 217-223
dc.descriptionLiu, G., Zhu, C., Xu, J., Xin, Y., Yang, T., Li, J., Shia, L., Liu, W., Thermo-responsive hollow silica microgels with controlled drug release properties (2013) Colloids Surf., 111 B, pp. 7-14
dc.descriptionLiechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A., Polymers for drug delivery systems (2010) Annu. Rev. Chem. Biomol. Eng., 1, pp. 149-173
dc.descriptionWu, C., Chang, J., Xiao, Y., Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms (2011) Ther. Deliv., 9, pp. 1189-1198
dc.descriptionMa, J., Xu, Q., Zhou, J., Zhang, J., Zhang, L., Tang, H., Chen, L., Synthesis and biological response of casein-based silica nano-composite film for drug delivery system (2013) Colloids Surf. B, 111 C, pp. 257-263
dc.descriptionDoadrio, L.A., Sousa, B., Doadrio, C.J., Perez, P.J., Izquierdo, B.I., Vallet, R.M., Mesoporous SBA-15HPLC evaluation for controlled gentamicin drug delivery (2004) J. Control. Release, 97, pp. 125-132
dc.descriptionZhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stuky, G.D., Nonionictriblock and star diblockcopoler and ologomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structure (1998) J. Am. Chem. Soc., 120, pp. 6024-6036
dc.descriptionPopovici, R.F., Seftel, E.M., Mihai, G.D., Popovici, E., Voicu, V.A., Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug (2011) J. Pharm. Sci., 100, pp. 704-714
dc.descriptionMigneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking (2004) BioTechniques, 37, pp. 790-802
dc.descriptionAnderson, P.J., Purification and quantitation of glutaraldehyde and its effect on several enzyme activities in skeletal muscle (1967) J. Histochem. Cytochem., 11, pp. 652-661
dc.descriptionEl-Thaher, N., Mekonnen, T., Mussone, P., Bressler, D., Choi, P., Effects of electrolytes, water, and temperature on cross-linking of glutaraldehyde and hydrolyzed specified risk material (2013) Ind. Eng. Chem. Res., 52, pp. 4987-4993
dc.descriptionOliveira, F.J.V.E., Melo Jr., M.A., Airoldi, C., Inorganic-organic hybrids presenting high basic center content: SBA-15 inorganic toxic metals sorption and energetic behavior (2013) Mater. Res. Bull., 48, pp. 1045-1056
dc.descriptionMonteiro Jr., O.A.C., Airoldi, C., Some studies of crosslinking chitosan-glutaraldehyde in homogeneous system (1999) Int. J. Biol. Macromol., 26, pp. 119-128
dc.descriptionOliveira, V.V., Airoldi, C., Assistant template and co-template agents in modelling mesoporous silicas and post-synthesizing organofunctionalizations (2012) J. Solid State Chem., 196, pp. 293-300
dc.descriptionYasmin, T., Müller, K., Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography (2011) J. Chromatogr. A, 1218, pp. 6464-6475
dc.descriptionMaria Chong, A.S., Zhao, X.S., Functionalization of SBA-15 with APTES and characterization of functionalized materials (2003) J. Phys. Chem., 107 B, pp. 2650-12657
dc.descriptionGalarneau, A., Cambon, H., Renzo, F.D., Fajula, F., True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature (2001) Langmuir, 17, pp. 8328-8335
dc.descriptionFarias, F.R., Airoldi, C., Thermogravimetry as a reliable tool to estimate the density of silanols on a silica gel surface (1998) J. Therm. Anal., 53, pp. 751-756
dc.descriptionZhao, D., Sun, J., Li, Q., Stucky, G.D., Morphological control of highly ordered mesoporous silica SBA-15 (2000) Chem. Mater., 12, pp. 275-279
dc.descriptionKatiyar, A., Yadav, S., Smirniotis, P.G., Pinto, N.G., Synthesis of ordered large pore SBA-15spherical particles for adsorption of biomolecules (2006) J. Chromatogr. A, 1122, pp. 13-20
dc.descriptionMoscofian, A.S.O., Pires, C.T.G.V.M.T., Viana, A.P., Airoldi, C., Organofunctionalized magnesium phyllosilicates as mono- or bifunctional entities for industrial dyes removal (2012) RSC Adv., 2, pp. 3502-3511
dc.descriptionXu, W., Gao, Q., Xua, Y., Wu, D., Sun, Y., Shen, W., Deng, F., Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres (2009) Powder Technol., 191, pp. 13-20
dc.descriptionPeppas, N.A., Analysis of Fickian and non-Fickian drug release from polymer (1985) Pharm. Acta Helv., 60, pp. 110-111
dc.languageen
dc.publisherElsevier
dc.relationColloids and Surfaces B: Biointerfaces
dc.rightsfechado
dc.sourceScopus
dc.titleThe Applicability Of Ordered Mesoporous Sba-15 And Its Hydrophobic Glutaraldehyde-bridge Derivative To Improve Ibuprofen-loading In Releasing System
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución