dc.creatorGomes L.
dc.creatorSantanche A.
dc.date2015
dc.date2015-06-25T12:51:11Z
dc.date2015-11-26T15:27:46Z
dc.date2015-06-25T12:51:11Z
dc.date2015-11-26T15:27:46Z
dc.date.accessioned2018-03-28T22:36:26Z
dc.date.available2018-03-28T22:36:26Z
dc.identifier
dc.identifierLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). Springer Verlag, v. 8990, n. , p. 26 - 54, 2015.
dc.identifier3029743
dc.identifier10.1007/978-3-662-46562-2_2
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924026958&partnerID=40&md5=556fb054bc6c628079686614705689d3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85222
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85222
dc.identifier2-s2.0-84924026958
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261426
dc.descriptionThe expansion of the Web and of our capacity of producing and storing information have had a profound impact on the way we organize, manipulate and share data.We have seen an increased specialization of database back-ends and data models to respond to modern application needs: text indexing engines organize unstructured data, standards and models were created to support the Semantic Web, Big Data requirements stimulated an explosion of data representation and manipulation models. This complex and heterogeneous environment demands unified strategies that enable data integration and, especially, cross-application, expressive querying. Here we present a new approach for the integration of structured and unstructured data within organizations. Our solution is based on the Complex Data Management System (CDMS), a system being developed to handle data typical of complex networks. The CDMS enables a relationship-centric interaction with data that brings many advantages to the institutional data integration scenario, allowing applications to rely on common models for data querying and manipulation. In our framework, diverse data models are integrated in a unifying RDF graph. A novel query model allows the combination of concepts from information retrieval, databases, and complex networks into a declarative query language that extends SPARQL. This query language enables flexible correlation queries over the unified data, enabling support for a wide range of applications such as CMSs, recommendation systems, social networks, etc. We also introduce Mappers, a data management mechanism that simplifies the integration of heterogeneous data and that is integrated in the query language for further flexibility. Experimental results from real data demonstrate the viability of our approach.
dc.description8990
dc.description
dc.description26
dc.description54
dc.descriptionAlves, H., Santanchè, A., Abstract framework for social ontologies and folksonomized ontologies (2012) SWIM, , ACM
dc.descriptionAmer-Yahia, S., Case, P., Rölleke, T., Shanmugasundaram, J., Weikum, G., Report on the DB/IR panel (2005) SIGMOD Record 34(4), pp. 71-74
dc.descriptionAuer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D., Triplify lightweight linked data publication from relational databases (2009) Proceedings of the 18th International Conference on World Wide Web, , WWW (2009)
dc.descriptionBanko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O., Open information extraction from the web (2007) IJCAI, pp. 2670-2676
dc.descriptionBerners-Lee, T., Giant global graph (2007) Online posting, , http://dig.csail.mit.edu/breadcrumbs/node/215
dc.descriptionBizer, C., D2rq-treating non-rdf databases as virtual rdf graphs (2004) Proceedings of the 3rd International Semantic Web Conference (ISWC2004)
dc.descriptionBlanco, R., Lioma, C., Graph-based term weighting for information retrieval (2012) Inf. Retr, 15 (1), pp. 54-92
dc.descriptionBlei, D.M., Ng, A.Y., Jordan, M.I., Latent dirichlet allocation (2003) J. Mach. Learn. Res, 3 (4-5), pp. 993-1022
dc.descriptionChaudhuri, S., Ramakrishnan, R., Weikum, G., Integrating DB and IR technologies: What is the sound of one hand clapping? (2005) CIDR, pp. 1-12
dc.descriptionCosta, L., Oliveira, O., Jr., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., Rocha, L., Analyzing and modeling real-world phenomena with complex networks: A survey of applications (2011) Adv. Phys, 60, pp. 329-412
dc.descriptionCosta, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V., Characterization of complex networks: A survey of measurements (2007) Adv. Phys, 56 (1), pp. 167-242
dc.descriptionCrestani, F., Application of spreading activation techniques in information retrieval (1997) Artif. Intell. Rev, 11 (6), pp. 453-482
dc.descriptionEtzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Yates, A., Web-scale information extraction in Know-It All (2004) WWW, 100p. , 26 March
dc.descriptionGetoor, L., Diehl, C.P., Link mining: A survey (2005) SIGKDD Explor. Newsl, 7 (2), pp. 3-12
dc.descriptionGomes, L., Jr., Costa, L., Santanchè, A., Querying complex data (2013) Technical Report IC-13-27, , Institute of Computing, University of Campinas, October
dc.descriptionGomes, L., Jr., Jensen, R., Santanchè, A., Query-based inferences in the Complex Data Management System (2013) Structured Learning: Inferring Graphs from Structured and Unstructured Inputs (SLG-ICML)
dc.descriptionGomes, L., Jr., Jensen, R., Santanchè, A., Towards query model integration: Topology-aware, ir-inspired metrics for declarative graph querying (2013) Graph Q-EDBT
dc.descriptionHan, J., Kamber, M., Data Mining: Concepts and Techniques (2006) Morgan Kaufmann, , San Francisco
dc.descriptionHassanzadeh, O., Consens, M., (2009) Linked movie data base. In: Proceedings of the 2nd Workshop on Linked Data on the Web (LDOW2009)
dc.descriptionIlyas, I.F., Beskales, G., Soliman, M.A., A survey of top-k query processing techniques in relational database systems. ACM Comput (2008) Surveys 40(4), 11 (1-11), p. 58
dc.descriptionImhoff, C., Galemmo, N., Geiger, J.G., Mastering Data Warehouse Design: Relational and Dimensional Techniques (2003) Wiley, , Chichester
dc.descriptionJarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P., Fundamentals of Data Warehouses (2003) Springer, , Heidelberg
dc.descriptionKimelfeld, B., Sagiv, Y., Finding and approximating top-k answers in keyword proximity search (2006) PODS
dc.descriptionLuo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K., SPARK2: Top-k keyword query in relational databases (2011) TKDE 23(12), pp. 1763-1780
dc.descriptionMarkovitch, S., Gabrilovich, E., Computing semantic relatedness using wikipediabased explicit semantic analysis (2007) IJCAI
dc.descriptionNgonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., Kaltenböck, M., SCMS-Semantifying content management systems (2011) ISWC 2011, Part II. LNCS, 7032, pp. 189-204. , Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) Springer, Heidelberg
dc.descriptionRodriguez, M.A., Neubauer, P., The graph traversal pattern (2010) Co RR, p. 1001. , abs/1004
dc.descriptionRodriguez, M.A., Pepe, A., Shinavier, J., The dilated triple (2010) Emergent Web Intelligence: Advanced Semantic Technologies, pp. 3-16. , Badr, Y., Chbeir, R., Abraham, A., Hassanien, A.-E. (eds.) Springer, London
dc.descriptionSarawagi, S., Information extraction. Found (2008) Trends Databases 1(3), pp. 261-377
dc.descriptionSchenk, S., Staab, S., newblock Networked graphs: A declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the web (2008) WWW
dc.descriptionSchwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M., Fed X A federation layer for distributed query processing on linked open data (2011) ESWC 2011, Part II. LNCS, 6644, pp. 481-486. , Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) Springer, Heidelberg
dc.descriptionSheth, A., Larson, J., Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput (1990) Surveys 22(3), pp. 183-236
dc.descriptionWeikum, G., Kasneci, G., Ramanath, M., Suchanek, F., Database and informationretrieval methods for knowledge discovery. Commun (2009) ACM 52(4), pp. 56-64
dc.descriptionWhite, S., Smyth, P., Algorithms for estimating relative importance in networks (2003) SIGKDD
dc.languageen
dc.publisherSpringer Verlag
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsfechado
dc.sourceScopus
dc.titleThe Web Within: Leveraging Web Standards And Graph Analysis To Enable Application-level Integration Of Institutional Data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución