dc.creatorCapovilla C.E.
dc.creatorCasella I.R.S.
dc.creatorSguarezi Filho A.J.
dc.creatorDos Santos Barros T.A.
dc.creatorRuppert Filho E.
dc.date2015
dc.date2015-06-25T12:51:07Z
dc.date2015-11-26T15:27:46Z
dc.date2015-06-25T12:51:07Z
dc.date2015-11-26T15:27:46Z
dc.date.accessioned2018-03-28T22:36:25Z
dc.date.available2018-03-28T22:36:25Z
dc.identifier
dc.identifierIeee Transactions On Industrial Electronics. Institute Of Electrical And Electronics Engineers Inc., v. 62, n. 1, p. 52 - 61, 2015.
dc.identifier2780046
dc.identifier10.1109/TIE.2014.2331017
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919935228&partnerID=40&md5=32e5c8f0aaf75204eb6d21f6ca74a34b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85213
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85213
dc.identifier2-s2.0-84919935228
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261423
dc.descriptionThis paper presents a performance analysis of a wireless direct power control system for switched reluctance aerogenerators. Aiming at a smart grid scenario, the utilization of wireless technologies for transmitting control information requires a powerful modulation and error-correction coding schemes to avoid any serious problems to the energetic plant. These transmission errors can cause permanent damages in the components of the turbine and converters, and they can also compromise the quality of the energy delivered to the grid. The performance of the proposed system is investigated in a frequency-selective fading channel, thus enabling a deeper study of the impact of the use of wireless communications for reference signal transmissions. This research demonstrates the operational viability of wireless systems for this type of application, when an appropriate digital modulation and coding techniques are applied.
dc.description62
dc.description1
dc.description52
dc.description61
dc.descriptionBlau, J., Europe plans a north sea grid (2010) IEEE Spectr, 47 (3), pp. 12-13. , Mar
dc.descriptionCecati, C., Citro, C., Piccolo, A., Siano, P., Smart operation of wind turbines and diesel generators according to economic criteria (2011) IEEE Trans. Ind. Electron, 58 (10), pp. 4514-4525. , Oct
dc.descriptionGlinkowski, M., Hou, J., Rackliffe, G., Advances in wind energy technologies in the context of smart grid (2011) Proc. IEEE, 99 (6), pp. 1083-1097. , Jun
dc.descriptionWang, J., Du, X., Zhang, X., Comparison of wind power generation interconnection technology standards (2011) Proc. Asia-Pac. Power Energy Eng. Conf, pp. 1-4. , Mar
dc.descriptionXiwen, W., Xiaoyan, Q., Jian, X., Xingyuan, L., Reactive power optimization in smart grid with wind power generator Proc. Asia-Pac. Power Energy Eng. Conf, 2010, pp. 1-4. , Mar
dc.descriptionShe, X., Huang, A.Q., Wang, F., Burgos, R., Wind energy system with integrated functions of active power transfer, reactive power compensation voltage conversion (2013) IEEE Trans. Ind. Electron, 60 (10), pp. 4512-4524. , Oct
dc.descriptionHe, Y., Hu, J., Rend, Z., Modelling and control of wind-turbine used dfig under network fault condition (2005) Proc. Int. Conf. Elect. Mach. Syst, 2, pp. 986-991. , Sep
dc.descriptionKim, S.-K., Kim, E., Pscad/emtdc-based modeling and analysis of a gearless variable speed wind turbine (2007) IEEE Trans. Energy Convers, 22 (2), pp. 421-430. , Jun
dc.descriptionChang, Y.-C., Liaw, C.-M., Establisment of a switched reluctance generator-based common dc microgrid system (2011) IEEE Trans. Power Electron, 26 (9), pp. 2512-2527. , Sep
dc.descriptionTorrey, D.A., Switched reluctance generators and their control (2002) IEEE Trans. Ind. Electron, 49 (1), pp. 3-14. , Feb
dc.descriptionHu, Y., Song, X., Cao, W., Ji, B., New sr drive with integrated charging capacity for plug-in hybrid electric vehicles (phevs) (2014) IEEE Trans. Ind. Electron, 61 (10), pp. 5722-5731. , Oct
dc.descriptionDos Santos, F.L.M., Multiphysics nvh modeling: Simulation of a switched reluctance motor for an electric vehicle (2014) IEEE Trans. Ind. Electron, 61 (1), pp. 469-476. , Jan
dc.descriptionMcSwiggan, D., Xu, L., Littler, T., Modelling and control of a variablespeed switched reluctance generator based wind turbine (2007) Proc. Univ. Power Eng. Conf, pp. 459-463. , Sep
dc.descriptionKrishnan, R., (2001) Switched Reluctance Motor Drives Modeling, Simulation Analysis Design, Applications, , Boca Raton, FL USA CRC Press
dc.descriptionMendez, S., Martinez, A., Millan, W., Montano, C.E., Perez-Cebolla, F., Design, characterization, validation of a 1-kw ac self-excited switched reluctance generator (2014) IEEE Trans. Ind. Electron, 61 (2), pp. 846-855. , Feb
dc.descriptionZhang, X., Tan, G., Kuai, S., Wang, Q., Position sensorless control of switched reluctance generator for wind energy conversion Proc. Asia-Pac. Power Energy Eng. Conf, 2010, pp. 1-5. , Mar
dc.descriptionSunan, E., Kucuk, F., Goto, H., Guo, H., Ichinokura, O., Three-phase full-bridge converter controlled permanent magnet reluctance generator for small-scale wind energy conversion systems (2014) IEEE Trans. Energy Convers, 29 (3), pp. 589-593. , Sep
dc.descriptionOgawa, K., Yamamura, N., Ishda, M., Study for small size wind power generating system using switched reluctance generator (2006) Proc. IEEE Int. Conf. Ind. Technol, pp. 1510-1515
dc.descriptionAzongha, S.F., Balathandayuthapani, S., Edrington, C.S., Leonard, J.P., Grid integration studies of a switched reluctance generator for future hardware-in-the-loop experiments Proc. IEEE Ind. Electron. Soc, 2010, pp. 3079-3084. , Nov
dc.descriptionStrzelecki, R., Benysek, G., (2008) Power Electronics in Smart Electrical Energy Networks, , London U.K.: Springer-Verlag
dc.descriptionLiu, N., Chen, J., Zhu, L., Zhang, J., He, Y., A key management scheme for secure communications of advanced metering infrastructure in smart grid (2013) IEEE Trans. Ind. Electron, 60 (10), pp. 4746-4756. , Oct
dc.descriptionSauter, T., Lobashov, M., End-to-end communication architecture for smartgrids (2011) IEEE Trans. Ind. Electron, 58 (4), pp. 1218-1228. , Apr
dc.descriptionSmolenski, R., Bojarski, J., Kempski, A., Lezynski, P., Time-domainbased assessment of data transmission error probability in smart grids with electromagnetic interference (2014) IEEE Trans. Ind. Electron, 61 (4), pp. 1882-1890. , Apr
dc.descriptionLi, T.J., (2002) Low Complexity Capacity Approaching Schemes: Design Analysis and Applications, , Ph.D. dissertation Texas A&M Univ., College Station, TX, USA
dc.descriptionProakis, J.G., (2008) Digital Communications, , New York, NY USA McGraw-Hill
dc.descriptionJiang, J., Narayanan, K.R., Iterative soft decision decoding of reed solomon (2004) IEEE Commun. Lett, 8 (4), pp. 244-246. , Apr
dc.descriptionLin, S., Costello, D.J., (2004) Error Control Coding, , Englewood Cliffs NJ USA Prentice-Hall
dc.descriptionBerrou, C., Glavieux, A., Thitimajshima, P., Near shannon limit errorcorrecting coding and decoding: Turbo-codes (1993) Proc. IEEE Int. Commun. Conf, pp. 1064-1070
dc.descriptionCasella, I.R.S., Analysis of turbo coded ofdm systems employing space-frequency block code in double selective fading channels (2007) Proc. IEEE Int. Microw. Optoelectron. Conf, pp. 516-520. , Oct./Nov
dc.descriptionChen, J., Abedi, A., Distributed turbo coding and decoding for wireless sensor networks (2011) IEEE Commun. Lett, 15 (2), pp. 166-168. , Feb
dc.descriptionGallager, R.G., (1963) Low-Density Parity-Check Codes, , Cambridge MA USA MIT Press
dc.descriptionZhang, Y., Ryan, W.E., Toward low ldpc-code floors: A case study (2009) IEEE Trans. Commun, 57 (6), pp. 1566-1573. , Jun
dc.descriptionCasella, I.R.S., Filho, A.J.S., Capovilla, C.E., Ruppert, E., A wireless deadbeat power control for wind power generation systems in smart grid applications (2011) Proc. Braz. Power Electron. Conf, pp. 520-523. , Sep
dc.descriptionShannon, E.C., A mathematical theory of communication (1948) Bell Syst. Tech. J, 27 (3), pp. 379-423. , Jul
dc.descriptionYang, M., Ryan, W.E., Li, Y., Design of efficiently encodable moderate-length high-rate irregular ldpc codes (2004) IEEE Trans. Commun, 52 (4), pp. 564-571. , Apr
dc.descriptionJin, H., Khandekar, A., McEliece, R.J., Irregular repeat-accumulate codes (2000) Proc. Int. Symp. Turbo Codes Relat. Topics, pp. 1-8. , Sep
dc.descriptionZhang, Y., Ryan, W.E., Li, Y., Structured eira codes with low floors (2005) Proc. Int. Symp. Inf. Theory, pp. 174-178. , Sep
dc.descriptionKim, J., Ramamoorthy, A., McLaughlin, S., The design of efficientlyencodable rate-compatible ldpc codes (2009) IEEE Trans. Commun, 57 (2), pp. 365-375. , Feb
dc.descriptionHe, Z., Fortier, P., Roy, S., Class of irregular ldpc codes with low error floor and low encoding complexity (2006) IEEE Commun. Lett, 10 (5), pp. 372-374. , May
dc.descriptionHehn, T., Huber, J.B., Ldpc codes and convolutional codes with equal structural delay: A comparison (2009) IEEE Trans. Commun, 57 (6), pp. 1683-1692. , Jun
dc.descriptionKaiser, M., Fong, W., Sikora, M., A comparison of decoding latency for block and convolutional codes (2009) Proc. Int. Symp. Commun. Theory Appl, pp. 1-5
dc.descriptionAkyol, B., Kirkham, H., Clements, S., Hadley, M., A survey of wireless communications for the electric power system (2010) U.S. Dept. Energy, , Washington, DC, USA Jan
dc.descriptionJeon, Y., Qos requirements for the smart grid communications system (2011) Int. J. Comput. Sci. Netw. Security, 11 (3), pp. 86-94. , Mar
dc.description(2004) Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Wireless Access Systems, , IEEE Std. 802.16-2004
dc.descriptionAnderson, M., Wimax for smart grids (2010) IEEE Spectr, 47 (7), p. 14. , Jul
dc.descriptionSood, V., Fischer, D., Eklund, J., Brown, T., Developing a communication infrastructure for the smart grid (2009) Proc. IEEE Elect. Power Energy Conf, pp. 1-7. , Oct
dc.descriptionSalvadori, F., Monitoring and diagnosis in industrial systems using wireless sensor networks (2007) Proc. IEEE Int. Symp. Intell. Signal Process, pp. 1-6. , Oct
dc.descriptionKhan, Z.H., Thiriet, J.M., Genon-Catalot, D., Wireless network architecture for diagnosis and monitoring applications (2009) Proc. IEEE Consum. Commun. Netw. Conf, pp. 1-2. , Jan
dc.descriptionAdamowicz, M., Strzelecki, R., Krzeminski, Z., Szewczyk, J., Lademan, L., Application of wireless communication to small wecs with induction generator Proc. IEEE Mediterranean Electrotech. Conf, 2010, pp. 944-948. , Apr
dc.descriptionAdamowicz, M., Strzelecki, R., Szewczyk, J., Lademan, L., Wireless short-range device for wind generators (2010) Proc. Biennial Baltic Electron. Conf, pp. 313-316. , Oct
dc.descriptionAnaya-Lara, O., Jenkins, N., McDonald, J.R., Communications requirements and technology for wind farm operation and maintenance (2006) Proc. IEEE Int. Conf. Ind. Inf. Syst, pp. 173-178. , Aug
dc.descriptionWanzhi, C., Zhiyong, T., Quangui, Z., Liang, C., Research of wireless communication based on lonworks for wind turbine control system (2009) Proc. IEEE Int. Conf. Energy Environ. Technol, pp. 787-789. , Oct
dc.descriptionKiyota, K., Kakishima, T., Chiba, A., Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kw rare-earth pm motor (2014) IEEE Trans. Ind. Electron, 61 (10), pp. 5712-5721. , Oct
dc.descriptionKoutroulis, E., Kalaitzakis, K., Design of a maximum power tracking system for wind-energy-conversion applications (2006) IEEE Trans. Ind. Electron, 53 (2), pp. 486-494. , Apr
dc.descriptionTapia, A., Tapia, G., Ostolaza, J.X., Sáenz, J.R., Modeling and control of a wind turbine driven doubly fed induction generator (2003) IEEE Trans. Energy Convers, 18 (2), pp. 194-204. , Jun
dc.descriptionKazmierkowski, M.P., Malesani, L., Current control techniques for three-phase voltage-source pwm converters: A survey (1998) IEEE Trans. Ind. Electron, 45 (5), pp. 691-703. , Oct
dc.descriptionBlaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V., Overview of control and grid synchronization for distributed power generation systems (2006) IEEE Trans. Ind. Electron, 53 (5), pp. 1398-1409. , Oct
dc.descriptionAbad, G., Lopez, J., Rodriguez, M.A., Marroyo, L., Iwanski, G., (2011) Doubly Fed Induction Machine, , Hoboken NJ USA Wiley
dc.descriptionTanner, R.M., A recursive approach to low complexity codes (1981) IEEE Trans. Inf. Theory, IT-27 (5), pp. 533-547. , Sep
dc.descriptionRichardson, T., Shokrollahi, A., Urbanke, R., Design of capacityapproaching low-density parity-check codes (2001) IEEE Trans. Inf. Theory, 47 (2), pp. 619-637. , Feb
dc.descriptionRichardson, T., Urbanke, R., The capacity of low-density parity check codes under message-passing decoding (2001) IEEE Trans. Inf. Theory, 47 (2), pp. 599-618. , Feb
dc.descriptionDinoi, L., Sottile, F., Benedetto, S., Design of versatile eira codes for parallel decoders (2008) IEEE Trans. Commun, 56 (12), pp. 2060-2070. , Dec
dc.descriptionShuval, B., Sason, I., On the universality of ldpc code ensembles under belief propagation and ml decoding Proc. IEEE Conv. Elect. Electron. Eng, 2010, pp. 355-359
dc.description(2005), ETSI DVB-S.2 Std. ETSI 302-307 Mar
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationIEEE Transactions on Industrial Electronics
dc.rightsfechado
dc.sourceScopus
dc.titlePerformance Of A Direct Power Control System Using Coded Wireless Ofdm Power Reference Transmissions For Switched Reluctance Aerogenerators In A Smart Grid Scenario
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución