dc.creatorGuzzo S.M.
dc.creatorPlanas G.
dc.date2015
dc.date2015-06-25T12:50:30Z
dc.date2015-11-26T15:27:44Z
dc.date2015-06-25T12:50:30Z
dc.date2015-11-26T15:27:44Z
dc.date.accessioned2018-03-28T22:36:24Z
dc.date.available2018-03-28T22:36:24Z
dc.identifier
dc.identifierApplicable Analysis. Taylor And Francis Ltd., v. 94, n. 4, p. 840 - 855, 2015.
dc.identifier36811
dc.identifier10.1080/00036811.2014.905677
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922815608&partnerID=40&md5=2165505dd844a45518344f4a1be94a94
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85143
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85143
dc.identifier2-s2.0-84922815608
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261415
dc.descriptionIn this paper, a class of Navier–Stokes equations with infinite delay is considered. It includes delays in the convective and the forcing terms. We discuss the existence of mild and classical solutions for the problem. We establish the results for an abstract delay problem by using the fact that the Stokes operator is the infinitesimal generator of an analytic semigroup of bounded linear operators. Finally, we apply these abstract results to our particular situation.
dc.description94
dc.description4
dc.description840
dc.description855
dc.descriptionCaraballo, T., Real, J., Navier–Stokes equations with delays (2001) Proc. R. Soc. A, 457, pp. 2441-2453
dc.descriptionCaraballo, T., Real, J., Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays (2003) Proc. R. Soc. A, 459, pp. 3181-3194
dc.descriptionCaraballo, T., Real, J., Attractors for 2D-Navier-Stokes models with delays (2004) J. Differ. Equ, 205, pp. 271-297
dc.descriptionMarín-Rubio, P., Real, J., Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators (2010) Discrete Contin. Dyn. Syst, 26, pp. 989-1006
dc.descriptionTaniguchi, T., The exponential behavior of Navier-Stokes equations with time delay external force (2005) Discrete Contin. Dyn. Syst, 12, pp. 997-1018
dc.descriptionLiu, X., Wang, Y., Pullback attractors for nonautonomous 2D-Navier-Stokes models with variable delays (2013) Abstr. Appl. Anal, 2013, p. 10 p. , Article ID 425031
dc.descriptionGarrido-Atienza, M.J., Marín-Rubio, P., Navier-Stokes equations with delays on infinite domains (2006) Nonlinear Anal, 64, pp. 1100-1118
dc.descriptionMarín-Rubio, P., Real, J., Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains (2007) Nonlinear Anal, 67, pp. 2784-2799
dc.descriptionNiche, C.J., Planas, G., Existence and decay of solutions in full space to Navier-Stokes equations with delays (2011) Nonlinear Anal, 74, pp. 244-256
dc.descriptionLiu, W., Asymptotic behavior of solutions of time-delayed Burgers’ equation (2002) Discrete Contin. Dyn. Syst. Ser. B, 2, pp. 47-56
dc.descriptionTang, Y., Wan, M., A remark on exponential stability of time-delayed Burgers equation (2009) Discrete Contin. Dyn. Syst. Ser. B, 12, pp. 219-225
dc.descriptionPlanas, G., Hernández, E., Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations (2008) Discrete Contin. Dyn. Syst, 21, pp. 1245-1258
dc.descriptionGuzzo, S.M., Planas, G., On a class of three dimensional Navier-Stokes equations with bounded delay (2011) Discrete Contin. Dyn. Syst. Ser. B, 16, pp. 225-238
dc.descriptionMarín-Rubio, P., Real, J., Valero, J., Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case (2011) Nonlinear Anal, 74, pp. 2012-2030
dc.descriptionRankin, S.M., III, Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations (1993) Trans. Amer. Math. Soc, 336, pp. 523-535
dc.descriptionCaraballo, T., Kloeden, P.E., Real, J., Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier-Stokes equations (2006) Adv. Nonlinear Stud, 6, pp. 411-436
dc.descriptionKloeden, P.E., Caraballo, T., Langa, J.A., Real, J., Valero, J., The three-dimensional globally modified Navier-Stokes equations (2009) Mathematical problems in engineering aerospace and sciences, 3, pp. 11-22. , Sivasundaram S, Devi JV, Drici Z, McRae F, (eds), Cambridge: Cambridge Scientific Publishers
dc.descriptionKloeden, P.E., Marín-Rubio, P., Real, J., Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations (2009) Commun. Pure Appl. Anal, 8, pp. 785-802
dc.descriptionRomito, M., The uniqueness of weak solutions of the globally modified Navier-Stokes equations (2009) Adv. Nonlinear Stud, 9, pp. 425-427
dc.descriptionMarín-Rubio, P., Márquez-Durán, A.M., Real, J., On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays (2011) Adv. Nonlinear Stud, 11, pp. 917-927
dc.descriptionCaraballo, T., Márquez-Durán, A.M., Real, J., Pullback and forward attractors for a 3D LANS-α model with delay (2006) Discrete Contin. Dyn. Syst. Ser. A, 15, pp. 559-578
dc.descriptionCaraballo, T., Márquez-Durán, A.M., Real, J., Asymptotic behaviour of the three-dimensional α-Navier-Stokes model with delays (2008) J. Math. Anal. Appl, 340, pp. 410-423
dc.descriptionCaraballo, T., Márquez-Durán, A.M., Real, J., Asymptotic behaviour of the three-dimensional α-Navier-Stokes model with locally Lipschitz delay forcing term (2009) Nonlinear Anal, 71, pp. e271-e282
dc.descriptionNiche, C.J., Planas, G., Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays (2012) Nonlinear Anal, 75, pp. 3936-3950
dc.descriptionTachim-Medjo, T., Attractors for the multilayer quasi-geostrophic equations of the ocean with delays (2008) Appl. Anal, 87, pp. 325-347
dc.descriptionTachim-Medjo, T., Multi-layer quasi-geostropic equations of the ocean with delays (2008) Discrete Contin. Dyn. Syst. Ser. B, 10, pp. 171-196
dc.descriptionTachim-Medjo, T., The primitive equations of the ocean with delays (2009) Nonlinear Anal. Real World Appl, 10, pp. 779-797
dc.descriptionWan, L., Duan, J., Exponential stability of the multi-layer quasi-geostrophic ocean model with delays (2009) Nonlinear Anal, 71, pp. 799-811
dc.descriptionFujiwara, D., Morimoto, H., An Lp theorem of the Helmholtz decomposition of vector fields (1977) J. Fac. Sci. Univ. Tokyo Sect. Math. IA, 24, pp. 685-700
dc.descriptionGiga, Y., Analyticity of the semi-group generated by the Stokes operator in Lp spaces (1981) Math. Z, 178, pp. 297-329
dc.descriptionGiga, Y., Domains of fractional powers of the Stokes operator in Lp spaces (1985) Arch. Ration. Mech. Anal, 89, pp. 251-265
dc.descriptionBridges, T.J., The Hopf bifurcation with symmetry for the Navier-Stokes equations in (Lp(Ω))n, with application to plane Poiseuille flow (1989) Arch. Ration. Mech. Anal, 106, pp. 335-376
dc.descriptionHino, Y., Murakami, S., Naito, T., (1991) Lecture notes in mathematics, 1473. , Berlin: Springer-Verlag
dc.descriptionHenríquez, H.R., Regularity of solutions of abstract retarded functional-differential equations with unbounded delay (1997) Nonlinear Anal, 28, pp. 513-531
dc.languageen
dc.publisherTaylor and Francis Ltd.
dc.relationApplicable Analysis
dc.rightsfechado
dc.sourceScopus
dc.titleExistence Of Solutions For A Class Of Navier–stokes Equations With Infinite Delay
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución