dc.creatorRocha L.C.
dc.creatorFerreira H.V.
dc.creatorPimenta E.F.
dc.creatorBerlinck R.G.S.
dc.creatorRezende M.O.O.
dc.creatorLandgraf M.D.
dc.creatorSeleghim M.H.R.
dc.creatorSette L.D.
dc.creatorPorto A.L.M.
dc.date2010
dc.date2015-06-26T12:37:38Z
dc.date2015-11-26T15:27:37Z
dc.date2015-06-26T12:37:38Z
dc.date2015-11-26T15:27:37Z
dc.date.accessioned2018-03-28T22:36:18Z
dc.date.available2018-03-28T22:36:18Z
dc.identifier
dc.identifierMarine Biotechnology. , v. 12, n. 5, p. 552 - 557, 2010.
dc.identifier14362228
dc.identifier10.1007/s10126-009-9241-y
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77957755661&partnerID=40&md5=57289003a101de3740bb155894df1540
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91220
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91220
dc.identifier2-s2.0-77957755661
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261392
dc.descriptionThe biotransformation reactions of α-bromoacetophenone (1), p-bromo-α-bromoacetophenone (2), and p-nitro-α-bromoacetophenone (3) by whole cells of the marine fungus Aspergillus sydowii Ce19 have been investigated. Fungal cells that had been grown in artificial sea water medium containing a high concentration of chloride ions (1.20 M) catalysed the biotransformation of 1 to 2-bromo-1-phenylethanol 4 (56%), together with the α-chlorohydrin 7 (9%), 1-phenylethan-1,2-diol 9 (26%), acetophenone 10 (4%) and phenylethanol 11 (5%) identified by GC-MS analysis. In addition, it was observed that the enzymatic reaction was accompanied by the spontaneous debromination of 1 to yield α-chloroacetophenone 5 (9%) and α-hydroxyacetophenone 6 (18%) identified by GC-FID analysis. When 2 and 3 were employed as substrates, various biotransformation products were detected but the formation of halohydrins was not observed. It is concluded that marine fungus A. sydowii Ce19 presents potential for the biotransformations of bromoacetophenone derivatives. © 2009 Springer Science+Business Media, LLC.
dc.description12
dc.description5
dc.description552
dc.description557
dc.descriptionAleixo, L.M., de Carvalho, M., Moran, P.J.S., Rodrigues, J.A.R., Hydride transfer versus electron transfer in the baker's yeast reduction (1993) Bioorg Med Chem Lett, 3, pp. 1637-1642
dc.descriptionAndrade, L.H., Polak, R., Porto, A.L.M., Schoenlein-Crusius, I.H., Comasseto, J.V., Application of bioreduction by microorganisms in the enantioselective synthesis of alpha-substituted-1-phenylethanols (2006) Lett Org Chem, 3, pp. 613-618
dc.descriptionAntunes, H., Fardelone, L.C., Rodrigues, J.A.R., Moran, P.J.S., Chemoenzymatic syntheses of (R)-2-bromo-, (R)-2-chloro- and (R)-2-azido-1-(1, 3-benzodioxol-5-yl)-1-ethanol (2004) Tetrahedron Asymmetr, 15, pp. 2615-2620
dc.descriptionAssis, L.F., Kagohara, E., Omori, A.T., Comasseto, J.V., Andrade, L.H., Porto, A.L.M., Deracemisation of (RS)-1-[4-methylselanyl)phenyl]ethanol and (RS)-1-[(4-ethylselanyl)phenyl]ethanol by strains of Aspergillus terreus (2007) Food Technol Biotechnol, 45, pp. 415-419
dc.descriptionBasavaiah, D., Rao, K.V., Reddy, B.S., (2S)-2-Anilinomethylpyrrolidine: an efficient in situ recyclable chiral catalytic source for the borane-mediated asymmetric reduction of prochiral ketones in refluxing toluene (2006) Tetrahedron Asymmetr, 17, pp. 1041-1044
dc.descriptionBasavaiah, D., Rao, K.V., Reddy, B.S., (5S)-1-Aza-2-imino-3oxa-4, 4-diphenylbicyclo[3.30]octane: a novel chiral catalytic source containing the N-(C=NH)-O moiety for the borane-mediated asymmetric reduction of prochiral ketones (2007) Tetrahedron Asymmetr, 18, pp. 963-967
dc.descriptionCagnon, J.R., Porto, A.L.M., Marsaioli, A.J., Manfio, G.P., Eguchi, S.Y., First evaluation of the Brazilian microorganisms biocatalytic potential (1999) Chemosphere, 38, pp. 2237-2242
dc.descriptionChartrain, M., Greasham, R., Moore, J., Reider, P., Robinson, D., Buckland, B., Asymmetric bioreductions: application to the synthesis of pharmaceuticals (2002) J Mol Catal B: Enzymatic, 11, pp. 503-512
dc.descriptionde Carvalho, M., Okamoto, M.T., Moran, P.J.S., Rodrigues, J.A.R., Baker's yeast reduction of α-haloacetophenones (1991) Tetrahedron, 47, pp. 2073-2080
dc.descriptionGoldberg, S., Schroer, K., Lutz, S., Liese, A., Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part II: whole cell reductions (2007) Appl Microbiol Biotechnol, 76, pp. 249-255
dc.descriptionGoswami, A., Bezbaruah, R.L., Goswami, J., Borthakur, N., Dey, D., Hazarika, A.K., Microbial reduction of ω-bromoacetophenones in the presence of surfactants (2000) Tetrahedron Asymmetr, 11, pp. 3701-3709
dc.descriptionGoswami, A., Mirfakhrae, K.D., Totleben, M.J., Swaminathan, S., Patel, R.N., Microbial reduction of α-chloroketone to α-chlorohydrin (2001) J Ind Microbiol Biotechnol, 26, pp. 259-262
dc.descriptionLagos, F.M., Carballeira, J.D., Bermúdez, J.L., Alvarez, E., Sinisterra, J.V., Highly stereoselective reduction of haloketones using three new yeasts: application to the synthesis of (S)-adrenergic β-blockers related to propranolol (2004) Tetrahedron Asymmetr, 15, pp. 763-770
dc.descriptionPatel, R.M., Banerjee, A., Chu, L., Brozozowski, N.V., Szarka, L.J., Microbial synthesis of chiral intermediates for β-receptor agonists (1998) J Am Oil Chem Soc, 75, pp. 1473-1482
dc.descriptionPiovan, L., Capelari, M., Andrade, L.H., Comasseto, J.V., Porto, A.L.M., Biocatalytic reduction of a racemic selenocyclohexanone by Brazilian basidiomycetes (2007) Tetrahedron Asymmetr, 18, pp. 1398-1402
dc.descriptionRocha, L.C., Ferreira, H.V., Pimenta, E.F., Berlinck, R.G.S., Seleghim, M.H.R., Javaroti, D.C.D., Sette, L.D., Porto, A.L.M., Bioreduction of α-chloroacetophenone by whole cells of marine fungi (2009) Biotechnol Lett, , doi:10.1007/s10529-009-0037-y
dc.descriptionRodrigues, J.A.R., Moran, P.J.S., Conceição, J.J.A., Fardelone, L.C., Recent advances in the biocatalytic asymmetric reduction of acetophenones and αβ-unsaturated carbonyl compounds (2004) Food Technol Biotechnol, 42, pp. 295-303
dc.descriptionSmolen, J.M., Weber, E.J., Tratnyek, P.G., Molecular probe techniques for the identification of reductants in sediments: evidence for reduction of 2-chloroacetophenone by hydride transfer (1999) Environ Sci Technol, 33, pp. 440-445
dc.descriptionWei, Z.-L., Li, Z.-Y., Li, G.-Q., anti-Prelog microbial reduction of aryl α-halomethyl or α-hydroxymethyl ketones with geotrichum sp 38 (1998) Tetrahedron, 54, pp. 13059-13072
dc.descriptionZhu, D., Mukherjee, C., Hua, L., "Green" synthesis of important pharmaceutical building blocks: enzymatic access to enantiomerically pure α-chloroalcohols (2005) Tetrahedron Asymmetr, 16, pp. 3275-3278
dc.languageen
dc.publisher
dc.relationMarine Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleBiotransformation Of α-bromoacetophenones By The Marine Fungus Aspergillus Sydowii
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución